
For Use with MATLAB®

User’s Guide
Version 2

Data Acquisition
 Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Data Acquisition Toolbox User’s Guide
 COPYRIGHT 1999 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1999 First printing New for Version 1
November 2000 Second printing Revised for Version 2 (Release 12)
June 2001 Third printing Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)

Contents
1
Introduction to Data Acquisition

What Is the Data Acquisition Toolbox? 1-2
Exploring the Toolbox . 1-2

Anatomy of a Data Acquisition Experiment 1-4

The Data Acquisition System . 1-5
Data Acquisition Hardware . 1-7
Sensors . 1-9
Signal Conditioning . 1-12
The Computer . 1-14
Software . 1-14

The Analog Input Subsystem . 1-17
Sampling . 1-17
Quantization . 1-21
Channel Configuration . 1-25
Transferring Data from Hardware to System Memory 1-28

Making Quality Measurements . 1-30
Accuracy and Precision . 1-30
Noise . 1-34
Matching the Sensor Range and A/D Converter Range 1-35
How Fast Should a Signal Be Sampled? 1-36

Selected Bibliography . 1-40
i

ii Contents
2
Getting Started

Installation Information . 2-2
Toolbox Installation . 2-2
Hardware and Driver Installation . 2-2

Toolbox Components . 2-3
M-File Functions . 2-4
The Data Acquisition Engine . 2-5
The Hardware Driver Adaptor . 2-8

Accessing Your Hardware . 2-10
Acquiring Data . 2-10
Outputting Data . 2-11
Reading and Writing Digital Values . 2-12

Understanding the Toolbox Capabilities 2-14
The Contents M-File . 2-14
Documentation Examples . 2-14
The Quick Reference Guide . 2-15
Demos . 2-15

Examining Your Hardware Resources 2-16
General Toolbox Information . 2-16
Adaptor-Specific Information . 2-17
Device Object Information . 2-18

Getting Help . 2-19
The daqhelp Function . 2-19
The propinfo Function . 2-20

3
The Data Acquisition Session

Overview . 3-2

Creating a Device Object . 3-4
Creating an Array of Device Objects . 3-5
Where Do Device Objects Exist? . 3-6

Adding Channels or Lines . 3-8
Mapping Hardware Channel IDs to MATLAB Indices 3-9

Configuring and Returning Properties 3-12
Property Types . 3-12
Returning Property Names and Property Values 3-14
Configuring Property Values . 3-18
Specifying Property Names . 3-19
Default Property Values . 3-19
The Data Acquisition Property Editor 3-20

Acquiring and Outputting Data . 3-22
Starting the Device Object . 3-23
Logging or Sending Data . 3-23
Stopping the Device Object . 3-24

Cleaning Up . 3-25

4
Getting Started with Analog Input

Creating an Analog Input Object . 4-2

Adding Channels to an Analog Input Object 4-3
Referencing Individual Hardware Channels 4-5
Example: Adding Channels for a Sound Card 4-6
iii

iv Contents
Configuring Analog Input Properties 4-8
The Sampling Rate . 4-8
Trigger Types . 4-10
The Samples to Acquire per Trigger . 4-11

Acquiring Data . 4-12
Starting the Analog Input Object . 4-12
Logging Data . 4-13
Stopping the Analog Input Object . 4-13

Analog Input Examples . 4-14
Acquiring Data with a Sound Card . 4-14
Acquiring Data with a National Instruments Board 4-18

Evaluating the Analog Input Object Status 4-21
Status Properties . 4-21
The Display Summary . 4-22

5
Doing More with Analog Input

Configuring and Sampling Input Channels 5-2
Input Channel Configuration . 5-3
Sampling Rate . 5-5
Channel Skew . 5-6

Managing Acquired Data . 5-8
Previewing Data . 5-8
Extracting Data from the Engine . 5-12
Returning Time Information . 5-17

Configuring Analog Input Triggers . 5-19
Defining a Trigger: Trigger Types and Conditions 5-20
Executing the Trigger . 5-25
Trigger Delays . 5-25
Repeating Triggers . 5-29

How Many Triggers Occurred? . 5-35
When Did the Trigger Occur? . 5-36
Device-Specific Hardware Triggers . 5-36

Events and Callbacks . 5-45
Event Types . 5-45
Recording and Retrieving Event Information 5-48
Creating and Executing Callback Functions 5-51
Examples: Using Callback Properties and Functions 5-52

Linearly Scaling the Data: Engineering Units 5-55
Example: Performing a Linear Conversion 5-56

6
Analog Output

Getting Started with Analog Output . 6-2
Creating an Analog Output Object . 6-2
Adding Channels to an Analog Output Object 6-3
Configuring Analog Output Properties . 6-5
Outputting Data . 6-8
Analog Output Examples . 6-9
Evaluating the Analog Output Object Status 6-13

Managing Output Data . 6-16
Queuing Data with putdata . 6-16
Example: Queuing Data with putdata 6-18

Configuring Analog Output Triggers 6-20
Defining a Trigger: Trigger Types . 6-21
Executing the Trigger . 6-22
How Many Triggers Occurred? . 6-22
When Did the Trigger Occur? . 6-23
Device-Specific Hardware Triggers . 6-24
v

vi Contents
Events and Callbacks . 6-26
Event Types . 6-26
Recording and Retrieving Event Information 6-28
Examples: Using Callback Properties and Callback Functions 6-31

Linearly Scaling the Data: Engineering Units 6-34
Example: Performing a Linear Conversion 6-35

Starting Multiple Device Objects . 6-37

7
Digital Input/Output

Creating a Digital I/O Object . 7-2
The Parallel Port . 7-3

Adding Lines to a Digital I/O Object . 7-4
Line and Port Characteristics . 7-5
Referencing Individual Hardware Lines 7-9

Writing and Reading Digital I/O Line Values 7-12
Writing Digital Values . 7-12
Reading Digital Values . 7-14
Example: Writing and Reading Digital Values 7-15

Generating Timer Events . 7-17
Timer Events . 7-17
Starting and Stopping a Digital I/O Object 7-18
Example: Generating Timer Events . 7-19

Evaluating the Digital I/O Object Status 7-20
The Display Summary . 7-20

8
Saving and Loading the Session

Saving and Loading Device Objects . 8-2
Saving Device Objects to an M-File . 8-2
Saving Device Objects to a MAT-File . 8-4

Logging Information to Disk . 8-5
Specifying a Filename . 8-6
Retrieving Logged Information . 8-7
Example: Logging and Retrieving Information 8-9

9
softscope: The Data Acquisition Oscilloscope

Opening the Oscilloscope . 9-2
Hardware Configuration . 9-3

Displaying Channels . 9-4
Creating Additional Displays . 9-5
Configuring Display Properties . 9-6
Math and Reference Channels . 9-7
Removing Channel Displays . 9-10

Scaling the Channel Data . 9-11
Configuring Channel Properties . 9-12

Triggering the Oscilloscope . 9-14
Acquisition Types . 9-14
Trigger Types . 9-14
Configuring Trigger Properties . 9-16

Making Measurements . 9-17
Defining a Measurement . 9-18
Defining a New Measurement Type . 9-19
Configuring Measurement Properties 9-20
vii

viii Contents
Exporting Data . 9-23
Channels . 9-23
Measurements . 9-24

Saving and Loading the Oscilloscope Configuration 9-25

10
Function Reference

Functions — Categorical List . 10-2
Getting Command Line Function Help 10-2
Creating Device Objects . 10-3
Adding Channels and Lines . 10-3
Getting and Setting Properties . 10-4
Executing the Object . 10-4
Working with Data . 10-4
Getting Information and Help . 10-5
General Purpose . 10-5

Functions — Alphabetical List . 10-8

11
Base Property Reference

Base Properties — Categorical List . 11-2
Getting Command Line Property Help 11-2
Analog Input Properties . 11-3
Analog Output Properties . 11-7
Digital I/O Properties . 11-11

Base Properties — Alphabetical List 11-13

12
Device-Specific Property Reference

Device-Specific Properties — By Vendor 12-2
Getting Command Line Property Help 12-2
Agilent Technologies Properties . 12-3
Keithley Properties . 12-4
Measurement Computing Properties . 12-5
National Instruments Properties . 12-5
Parallel Port Properties . 12-6
Sound Card Properties . 12-6

Device-Specific Properties — Alphabetical List 12-7

A
Troubleshooting Your Hardware

Agilent Technologies Hardware . A-2
What Driver Are You Using? . A-2
Is Your Hardware Functioning Properly? A-3

Measurement Computing Hardware . A-5
What Driver Are You Using? . A-5
Is Your Hardware Functioning Properly? A-7

National Instruments Hardware . A-8
What Driver Are You Using? . A-8
Is Your Hardware Functioning Properly? A-10

Sound Cards . A-11
Microphone and Sound Card Types . A-14
Testing with a Microphone . A-15
Testing with a CD Player . A-15
Running in Full Duplex Mode . A-17
ix

x Contents
Other Things to Try . A-18
Registering the Hardware Driver Adaptor A-18
Contacting The MathWorks . A-19

B
Managing Your Memory Resources

Memory Allocation . B-2

How Much Memory Do You Need? . B-3

Example: Managing Memory Resources B-4

Glossary

Index

1

Introduction to Data
Acquisition

Before you set up any data acquisition system, you should understand the physical quantities you
want to measure, the characteristics of those physical quantities, the appropriate sensor to use, and
the appropriate data acquisition hardware to use.

The purpose of this chapter is to provide you with some general guidelines about making
measurements with a data acquisition system. The information provided should assist you in
understanding the above considerations, and understanding the specification sheet associated with
your hardware. The sections are as follows.

What Is the Data Acquisition
Toolbox? (p. 1-2)

Description of the toolbox and the kinds of tasks it can perform

Anatomy of a Data Acquisition
Experiment (p. 1-4)

Tasks you perform for each new data acquisition experiment

The Data Acquisition System
(p. 1-5)

Typical components that compose a data acquisition system

The Analog Input Subsystem
(p. 1-17)

Hardware subsystem that converts (digitizes) real-world sensor
signals into numbers your computer can read

Making Quality
Measurements (p. 1-30)

Maximizing precision and accuracy, minimizing noise, and matching
the sensor range to the hardware range

Selected Bibliography (p. 1-40) Resources for additional information

1 Introduction to Data Acquisition

1-2
What Is the Data Acquisition Toolbox?
The Data Acquisition Toolbox is a collection of M-file functions and MEX-file
dynamic link libraries (DLLs) built on the MATLAB® technical computing
environment. The toolbox provides you with these main features:

• A framework for bringing live, measured data into MATLAB using
PC-compatible, plug-in data acquisition hardware

• Support for analog input (AI), analog output (AO), and digital I/O (DIO)
subsystems including simultaneous analog I/O conversions

• Support for these popular hardware vendors/devices:

- Advantech boards that use the Advantech Device Manager

- Agilent Technologies E1432A/33A/34A VXI modules

- Keithley boards that use DriverLINX drivers.

- Measurement Computing Corporation (ComputerBoards) boards

- National Instruments boards that use NI-DAQ software (except SCXI)

- Parallel ports LPT1–LPT3

- Windows sound cards

Additionally, you can use the Data Acquisition Toolbox Adaptor Kit to
interface unsupported hardware devices to the toolbox.

• Event-driven acquisitions

Exploring the Toolbox
A list of the toolbox functions is available to you by typing

help daq

You can view the code for any function by typing

type function_name

You can view the help for any function by typing

daqhelp function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding

What Is the Data Acquisition Toolbox?
your own M-files, or by using it in combination with other products such as the
Signal Processing Toolbox or the Instrument Control Toolbox.

The MathWorks provides several related products that are especially relevant
to the kinds of tasks you can perform with the Data Acquistion Toolbox. For
more information about any of these products, see

http://www.mathworks.com/products/daq/related.jsp
1-3

1 Introduction to Data Acquisition

1-4
Anatomy of a Data Acquisition Experiment
For each new data acquisition experiment, you need to perform these tasks:

• System setup

• Calibration

• Trials

System Setup
The first step in any data acquisition experiment is to install the hardware and
software. Hardware installation consists of plugging a board into your
computer or installing modules into an external chassis. Software installation
consists of loading hardware drivers and application software onto your
computer. After the hardware and software are installed, you can attach your
sensors.

Calibration
After the hardware and software are installed and the sensors are connected,
the data acquisition hardware should be calibrated. Calibration consists of
providing a known input to the system and recording the output. For many
data acquisition devices, calibration can be easily accomplished with software
provided by the vendor.

Trials
After the hardware is set up and calibrated, you can begin to acquire data. You
might think that if you completely understand the characteristics of the signal
you are measuring, then you should be able to configure your data acquisition
system and acquire the data.

In the real world however, your sensor might be picking up unacceptable noise
levels and require shielding, or you might need to run the device at a higher
rate, or perhaps you need to add an antialias filter to remove unwanted
frequency components.

These real-world effects act as obstacles between you and a precise, accurate
measurement. To overcome these obstacles, you need to experiment with
different hardware and software configurations. In other words, you need to
perform multiple data acquisition trials.

The Data Acquisition System
The Data Acquisition System
As a user of MATLAB and the Data Acquisition Toolbox, you are interested in
measuring and analyzing physical phenomena. The purpose of any data
acquisition system is to provide you with the tools and resources necessary to
do so.

You can think of a data acquisition system as a collection of software and
hardware that connects you to the physical world. A typical data acquisition
system consists of these components:

• Data acquisition hardware

At the heart of any data acquisition system lies the data acquisition
hardware. The main function of this hardware is to convert analog signals to
digital signals, and to convert digital signals to analog signals.

• Sensors and actuators (transducers)

Sensors and actuators can both be transducers. A transducer is a device that
converts input energy of one form into output energy of another form. For
example, a microphone is a sensor that converts sound energy (in the form of
pressure) into electrical energy, while a loudspeaker is an actuator that
converts electrical energy into sound energy.

• Signal conditioning hardware

Sensor signals are often incompatible with data acquisition hardware. To
overcome this incompatibility, the signal must be conditioned. For example,
you might need to condition an input signal by amplifying it or by removing
unwanted frequency components. Output signals might need conditioning as
well. However, only input signal conditioning is discussed in this chapter.

• The computer

The computer provides a processor, a system clock, a bus to transfer data,
and memory and disk space to store data.

• Software

Data acquisition software allows you to exchange information between the
computer and the hardware. For example, typical software allows you to
configure the sampling rate of your board, and acquire a predefined amount
of data.
1-5

1 Introduction to Data Acquisition

1-6
The data acquisition components, and their relationship to each other, are
shown below.

The figure depicts the two important features of a data acquisition system:

• Signals are input to a sensor, conditioned, converted into bits that a
computer can read, and analyzed to extract meaningful information.

For example, sound level data is acquired from a microphone, amplified,
digitized by a sound card, and stored in MATLAB for subsequent analysis of
frequency content.

Sensor Signal
conditioning

Acquisition
hardware

Computer Software

Data Acquisition System

Physical
phenomena

Data
analysis

Actuator

Physical
phenomena

The Data Acquisition System
• Data from a computer is converted into an analog signal and output to an
actuator.

For example, a vector of data in MATLAB is converted to an analog signal by
a sound card and output to a loudspeaker.

Data Acquisition Hardware
Data acquisition hardware is either internal and installed directly into an
expansion slot inside your computer, or external and connected to your
computer through an external cable. For example, VXI modules are installed
in an external VXI chassis, and data is transferred between MATLAB and the
module using an external link such as FireWire (IEEE 1394).

At the simplest level, data acquisition hardware is characterized by the
subsystems it possesses. A subsystem is a component of your data acquisition
hardware that performs a specialized task. Common subsystems include

• Analog input

• Analog output

• Digital input/output

• Counter/timer

Hardware devices that consist of multiple subsystems, such as the one depicted
below, are called multifunction boards.

Analog input
subsystem

Digital I/O
subsystem

Analog output
subsystem

Counter/timer
subsystem
1-7

1 Introduction to Data Acquisition

1-8
Analog Input Subsystems
Analog input subsystems convert real-world analog input signals from a sensor
into bits that can be read by your computer. Perhaps the most important of all
the subsystems commonly available, they are typically multichannel devices
offering 12 or 16 bits of resolution.

Analog input subsystems are also referred to as AI subsystems, A/D converters,
or ADCs. Analog input subsystems are discussed in detail beginning in “The
Analog Input Subsystem” on page 1-17.

Analog Output Subsystems
Analog output subsystems convert digital data stored on your computer to a
real-world analog signal. These subsystems perform the inverse conversion of
analog input subsystems. Typical acquisition boards offer two output channels
with 12 bits of resolution, with special hardware available to support multiple
channel analog output operations.

Analog output subsystems are also referred to as AO subsystems, D/A
converters, or DACs.

Digital Input/Output Subsystems
Digital input/output (DIO) subsystems are designed to input and output digital
values (logic levels) to and from hardware. These values are typically handled
either as single bits or lines, or as a port, which typically consists of eight lines.

While most popular data acquisition cards include some digital I/O capability,
it is usually limited to simple operations, and special dedicated hardware is
often necessary for performing advanced digital I/O operations.

Counter/Timer Subsystems
Counter/timer (C/T) subsystems are used for event counting, frequency and
period measurement, and pulse train generation.

The Data Acquisition System
Sensors
A sensor converts the physical phenomena of interest into a signal that is input
into your data acquisition hardware. There are two main types of sensors based
on the output they produce: digital sensors and analog sensors.

Digital sensors produce an output signal that is a digital representation of the
input signal, and has discrete values of magnitude measured at discrete times.
A digital sensor must output logic levels that are compatible with the digital
receiver. Some standard logic levels include transistor-transistor logic (TTL)
and emitter-coupled logic (ECL). Examples of digital sensors include switches
and position encoders.

Analog sensors produce an output signal that is directly proportional to the
input signal, and is continuous in both magnitude and in time. Most physical
variables such as temperature, pressure, and acceleration are continuous in
nature and are readily measured with an analog sensor. For example, the
temperature of an automobile cooling system and the acceleration produced by
a child on a swing all vary continuously.

The sensor you use depends on the phenomena you are measuring. Some
common analog sensors and the physical variables they measure are listed
below.

Table 1-1: Common Analog Sensors

Sensor Physical Variable

Accelerometer Acceleration

Microphone Pressure

Pressure gauge Pressure

Resistance temperature
device (RTD)

Temperature

Strain gauge Force

Thermocouple Temperature
1-9

1 Introduction to Data Acquisition

1-1
When choosing the best analog sensor to use, you must match the
characteristics of the physical variable you are measuring with the
characteristics of the sensor. The two most important sensor characteristics
are

• The sensor output

• The sensor bandwidth

Sensor Output
The output from a sensor can be an analog signal or a digital signal, and the
output variable is usually a voltage although some sensors output current.

Current Signals. Current is often used to transmit signals in noisy environments
because it is much less affected by environmental noise. The full scale range of
the current signal is often either 4-20 mA or 0-20 mA. A 4-20 mA signal has the
advantage that even at minimum signal value, there should be a detectable
current flowing. The absence of this indicates a wiring problem.

Before conversion by the analog input subsystem, the current signals are
usually turned into voltage signals by a current-sensing resistor. The resistor
should be of high precision, perhaps 0.03% or 0.01% depending on the
resolution of your hardware. Additionally, the voltage signal should match the
signal to an input range of the analog input hardware. For 4-20 mA signals, a
50 ohm resistor will give a voltage of 1 V for a 20 mA signal by Ohm’s law.

Voltage Signals. The most commonly interfaced signal is a voltage signal. For
example, thermocouples, strain gauges, and accelerometers all produce voltage
signals. There are three major aspects of a voltage signal that you need to
consider:

• Amplitude

If the signal is smaller than a few millivolts, you might need to amplify it. If
it is larger than the maximum range of your analog input hardware
(typically ±10 V), you will have to divide the signal down using a resistor
network.

The amplitude is related to the sensitivity (resolution) of your hardware.
Refer to “Accuracy and Precision” on page 1-30 for more information about
hardware sensitivity.
0

The Data Acquisition System
• Frequency

Whenever you acquire data, you should decide the highest frequency you
want to measure.

The highest frequency component of the signal determines how often you
should sample the input. If you have more than one input, but only one
analog input subsystem, then the overall sampling rate goes up in proportion
to the number of inputs. Higher frequencies might be present as noise, which
you can remove by filtering the signal before it is digitized.

If you sample the input signal at least twice as fast as the highest frequency
component, then that signal will be uniquely characterized. However, this
rate might not mimic the waveform very closely. For a rapidly varying signal,
you might need a sampling rate of roughly 10 to 20 times the highest
frequency to get an accurate picture of the waveform. For slowly varying
signals, you need only consider the minimum time for a significant change in
the signal.

The frequency is related to the bandwidth of your measurement. Bandwidth
is discussed in the next section.

• Duration

How long do you want to sample the signal for? If you are storing data to
memory or to a disk file, then the duration determines the storage resources
required. The format of the stored data also affects the amount of storage
space required. For example, data stored in ASCII format takes more space
than data stored in binary format.

Sensor Bandwidth
In a real-world data acquisition experiment, the physical phenomena you are
measuring has expected limits. For example, the temperature of your
automobile’s cooling system varies continuously between its low limit and high
limit. The temperature limits, as well as how rapidly the temperature varies
between the limits, depends on several factors including your driving habits,
the weather, and the condition of the cooling system. The expected limits might
be readily approximated, but there are an infinite number of possible
temperatures that you can measure at a given time. As explained in
“Quantization” on page 1-21, these unlimited possibilities are mapped to a
finite set of values by your data acquisition hardware.
1-11

1 Introduction to Data Acquisition

1-1
The bandwidth is given by the range of frequencies present in the signal being
measured. You can also think of bandwidth as being related to the rate of
change of the signal. A slowly varying signal has a low bandwidth, while a
rapidly varying signal has a high bandwidth. To properly measure the physical
phenomena of interest, the sensor bandwidth must be compatible with the
measurement bandwidth.

You might want to use sensors with the widest possible bandwidth when
making any physical measurement. This is the one way to ensure that the basic
measurement system is capable of responding linearly over the full range of
interest. However, the wider the bandwidth of the sensor, the more you must
be concerned with eliminating sensor response to unwanted frequency
components.

Signal Conditioning
Sensor signals are often incompatible with data acquisition hardware. To
overcome this incompatibility, the sensor signal must be conditioned. The type
of signal conditioning required depends on the sensor you are using. For
example, a signal might have a small amplitude and require amplification, or
it might contain unwanted frequency components and require filtering.
Common ways to condition signals include

• Amplification

• Filtering

• Electrical isolation

• Multiplexing

• Excitation source

Amplification
Low-level signals — less than around 100 millivolts — usually need to be
amplified. High-level signals might also require amplification depending on
the input range of the analog input subsystem.

For example, the output signal from a thermocouple is small and must be
amplified before it is digitized. Signal amplification allows you to reduce noise
and to make use of the full range of your hardware thereby increasing the
resolution of the measurement.
2

The Data Acquisition System
Filtering
Filtering removes unwanted noise from the signal of interest. A noise filter is
used on slowly varying signals such as temperature to attenuate higher
frequency signals that can reduce the accuracy of your measurement.

Rapidly varying signals such as vibration often require a different type of filter
known as an antialiasing filter. An antialiasing filter removes undesirable
higher frequencies that might lead to erroneous measurements.

Electrical Isolation
If the signal of interest contains high-voltage transients that could damage the
computer, then the sensor signals should be electrically isolated from the
computer for safety purposes.

You can also use electrical isolation to make sure that the readings from the
data acquisition hardware are not affected by differences in ground potentials.
For example, when the hardware device and the sensor signal are each
referenced to ground, problems occur if there is a potential difference between
the two grounds. This difference can lead to a ground loop, which might lead to
erroneous measurements. Using electrically isolated signal conditioning
modules eliminates the ground loop and ensures that the signals are accurately
represented.

Multiplexing
A common technique for measuring several signals with a single measuring
device is multiplexing.

Signal conditioning devices for analog signals often provide multiplexing for
use with slowly changing signals such as temperature. This is in addition to
any built-in multiplexing on the DAQ board. The A/D converter samples one
channel, switches to the next channel and samples it, switches to the next
channel, and so on. Because the same A/D converter is sampling many
channels, the effective sampling rate of each individual channel is inversely
proportional to the number of channels sampled.

You must take care when using multiplexers so that the switched signal has
sufficient time to settle. Refer to “Noise” on page 1-34 for more information
about settling time.
1-13

1 Introduction to Data Acquisition

1-1
Excitation Source
Some sensors require an excitation source to operate. For example, strain
gauges, and resistive temperature devices (RTDs) require external voltage or
current excitation. Signal conditioning modules for these sensors usually
provide the necessary excitation. RTD measurements are usually made with a
current source that converts the variation in resistance to a measurable
voltage.

The Computer
The computer provides a processor, a system clock, a bus to transfer data, and
memory and disk space to store data.

The processor controls how fast data is accepted by the converter. The system
clock provides time information about the acquired data. Knowing that you
recorded a sensor reading is generally not enough. You also need to know when
that measurement occurred.

Data is transferred from the hardware to system memory via dynamic memory
access (DMA) or interrupts. DMA is hardware controlled and therefore
extremely fast. Interrupts might be slow because of the latency time between
when a board requests interrupt servicing and when the computer responds.
The maximum acquisition rate is also determined by the computer’s bus
architecture. Refer to “How Are Acquired Samples Clocked?” on page 1-24 for
more information about DMA and interrupts.

Software
Regardless of the hardware you are using, you must send information to the
hardware and receive information from the hardware. You send configuration
information to the hardware such as the sampling rate, and receive
information from the hardware such as data, status messages, and error
messages. You might also need to supply the hardware with information so
that you can integrate it with other hardware and with computer resources.
This information exchange is accomplished with software.
4

The Data Acquisition System
There are two kinds of software:

• Driver software

• Application software

For example, suppose you are using the Data Acquisition Toolbox with a
National Instruments AT-MIO-16E-1 board and its associated NI-DAQ driver.
The relationship between you, the driver software, the application software,
and the hardware is shown below.

The diagram illustrates that you supply information to the hardware, and you
receive information from the hardware.

Driver
software

User

Hardware

Application
software

You

Data Acquisition Toolbox and MATLAB

NI-DAQ

National Instruments
AT-MIO-16E-1 board
1-15

1 Introduction to Data Acquisition

1-1
Driver Software
For data acquisition device, there is associated driver software that you must
use. Driver software allows you to access and control the capabilities of your
hardware. Among other things, basic driver software allows you to

• Bring data on to and get data off of the board

• Control the rate at which data is acquired

• Integrate the data acquisition hardware with computer resources such as
processor interrupts, DMA, and memory

• Integrate the data acquisition hardware with signal conditioning hardware

• Access multiple subsystems on a given data acquisition board

• Access multiple data acquisition boards

Application Software
Application software provides a convenient front end to the driver software.
Basic application software allows you to

• Report relevant information such as the number of samples acquired

• Generate events

• Manage the data stored in computer memory

• Condition a signal

• Plot acquired data

With some application software, you can also perform analysis on the data.
MATLAB and the Data Acquisition Toolbox provide you with these capabilities
and more.
6

The Analog Input Subsystem
The Analog Input Subsystem
Many data acquisition hardware devices contain one or more subsystems that
convert (digitize) real-world sensor signals into numbers your computer can
read. Such devices are called analog input subsystems (AI subsystems, A/D
converters, or ADCs). After the real-world signal is digitized, you can analyze
it, store it in system memory, or store it to a disk file.

The function of the analog input subsystem is to sample and quantize the
analog signal using one or more channels. You can think of a channel as a path
through which the sensor signal travels. Typical analog input subsystems have
eight or 16 input channels available to you. After data is sampled and
quantized, it must be transferred to system memory.

Analog signals are continuous in time and in amplitude (within predefined
limits). Sampling takes a “snapshot” of the signal at discrete times, while
quantization divides the voltage (or current) value into discrete amplitudes.
Sampling, quantization, channel configuration, and transferring data from
hardware to system memory are discussed below.

Sampling
Sampling takes a snapshot of the sensor signal at discrete times. For most
applications, the time interval between samples is kept constant (for example,
sample every millisecond) unless externally clocked.

For most digital converters, sampling is performed by a sample and hold (S/H)
circuit. An S/H circuit usually consists of a signal buffer followed by an
electronic switch connected to a capacitor. The operation of an S/H circuit
follows these steps:

1 At a given sampling instant, the switch connects the buffer and capacitor to
an input.

2 The capacitor is charged to the input voltage.

3 The charge is held until the A/D converter digitizes the signal.

4 For multiple channels connected (multiplexed) to one A/D converter, the
previous steps are repeated for each input channel.

5 The entire process is repeated for the next sampling instant.
1-17

1 Introduction to Data Acquisition

1-1
A multiplexer, S/H circuit, and A/D converter are illustrated in the next
section.

Hardware can be divided into two main categories based on how signals are
sampled: scanning hardware, which samples input signals sequentially, and
simultaneous sample and hold (SS/H) hardware, which samples all signals at
the same time. These two types of hardware are discussed below.

Scanning Hardware
Scanning hardware samples a single input signal, converts that signal to a
digital value, and then repeats the process for every input channel used. In
other words, each input channel is sampled sequentially. A scan occurs when
each input in a group is sampled once.

As shown below, most data acquisition devices have one A/D converter that is
multiplexed to multiple input channels.

Therefore, if you use multiple channels, those channels cannot be sampled
simultaneously and a time gap exists between consecutive sampled channels.
This time gap is called the channel skew. You can think of the channel skew as
the time it takes the analog input subsystem to sample a single channel.

Input
channels

Signal buffer A/D converter

Sample and hold circuitMultiplexer

Amplifier
8

The Analog Input Subsystem
Additionally, the maximum sampling rate your hardware is rated at typically
applies for one channel. Therefore, the maximum sampling rate per channel is
given by the formula

Typically, you can achieve this maximum rate only under ideal conditions. In
practice, the sampling rate depends on several characteristics of the analog
input subsystem including the settling time and the gain, as well as the
channel skew. The sample period and channel skew for a multichannel
configuration using scanning hardware is shown below.

If you cannot tolerate channel skew in your application, you must use
hardware that allows simultaneous sampling of all channels. Simultaneous
sample and hold hardware is discussed in the next section.

Maximum sampling rate per channel Maximum board rate
Number of channels scanned
--=

...

Group
scan 1

Time

Sample period

Group
scan 2

Group
scan n

Channel skew

C
h

an
n

el
s

1-19

1 Introduction to Data Acquisition

1-2
Simultaneous Sample and Hold Hardware
Simultaneous sample and hold (SS/H) hardware samples all input signals at
the same time and holds the values until the A/D converter digitizes all the
signals. For high-end systems, there can be a separate A/D converter for each
input channel.

For example, suppose you need to simultaneously measure the acceleration of
multiple accelerometers to determine the vibration of some device under test.
To do this, you must use SS/H hardware because it does not have a channel
skew. In general, you might need to use SS/H hardware if your sensor signal
changes significantly in a time that is less than the channel skew, or if you need
to use a transfer function or perform a frequency domain correlation.

The sample period for a multichannel configuration using SS/H hardware is
shown below. Note that there is no channel skew.

...

Group
scan 1

C
h

an
n

el
s

Time

Sample period

Group
scan 2

Group
scan n
0

The Analog Input Subsystem
Quantization
As discussed in the previous section, sampling takes a snapshot of the input
signal at an instant of time. When the snapshot is taken, the sampled analog
signal must be converted from a voltage value to a binary number that the
computer can read. The conversion from an infinitely precise amplitude to a
binary number is called quantization.

During quantization, the A/D converter uses a finite number of evenly spaced
values to represent the analog signal. The number of different values is
determined by the number of bits used for the conversion. Most modern
converters use 12 or 16 bits. Typically, the converter selects the digital value
that is closest to the actual sampled value.

The figure below shows a 1 Hz sine wave quantized by a 3 bit A/D converter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Time (sec.)

A
m

pl
itu

de
1-21

1 Introduction to Data Acquisition

1-2
The number of quantized values is given by 23 = 8, the largest representable
value is given by 111 = 22 + 21 + 20 = 7.0, and the smallest representable value
is given by 000 = 0.0.

Quantization Error
There is always some error associated with the quantization of a continuous
signal. Ideally, the maximum quantization error is ±0.5 least significant bits
(LSBs), and over the full input range, the average quantization error is zero.

As shown below, the quantization error for the previous sine wave is calculated
by subtracting the actual signal from the quantized signal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec.)

Q
ua

nt
iz

at
io

n
er

ro
r

(b
its

)

2

The Analog Input Subsystem
Input Range and Polarity
The input range of the analog input subsystem is the span of input values for
which a conversion is valid. You can change the input range by selecting a
different gain value. For example, National Instruments’ AT-MIO-16E-1 board
has eight gain values ranging from 0.5 to 100. Many boards include a
programmable gain amplifier that allows you to change the device gain
through software.

When an input signal exceeds the valid input range of the converter, an
overrange condition occurs. In this case, most devices saturate to the largest
representable value, and the converted data is almost definitely incorrect. The
gain setting affects the precision of your measurement — the higher (lower) the
gain value, the lower (higher) the precision. Refer to “How Are Range, Gain,
and Measurement Precision Related?” on page 1-33 for more information about
how input range, gain, and precision are related to each other.

An analog input subsystem can typically convert both unipolar signals and
bipolar signals. A unipolar signal contains only positive values and zero, while
a bipolar signal contains positive values, negative values, and zero.

Unipolar and bipolar signals are depicted below. Refer to the figure in
“Quantization” on page 1-21 for an example of a unipolar signal.

0 Volts

-5 Volts

5 Volts

10 Volts

Unipolar Bipolar Unipolar
1-23

1 Introduction to Data Acquisition

1-2
In many cases, the signal polarity is a fixed characteristic of the sensor and you
must configure the input range to match this polarity.

As you can see, it is crucial to understand the range of signals expected from
your sensor so that you can configure the input range of the analog input
subsystem to maximize resolution and minimize the chance of an overrange
condition.

How Are Acquired Samples Clocked?
Samples are acquired from an analog input subsystem at a specific rate by a
clock. Like any timing system, data acquisition clocks are characterized their
resolution and accuracy. Timing resolution is defined as the smallest time
interval that you can accurately measure. The timing accuracy is affected by
clock jitter. Jitter arises when a clock produces slightly different values for a
given time interval.

For any data acquisition system, there are typically three clock sources that
you can use: the onboard data acquisition clock, the computer clock, or an
external clock. The Data Acquisition Toolbox supports all of these clock
sources, depending on the requirements of your hardware.

The Onboard Clock. The onboard clock is typically a timer chip on the hardware
board that is programmed to generate a pulse stream at the desired rate. The
onboard clock generally has high accuracy and low jitter compared to the
computer clock. You should always use the onboard clock when the sampling
rate is high, and when you require a fixed time interval between samples. The
onboard clock is referred to as the internal clock in this guide.

The Computer Clock. The computer (PC) clock is used for boards that do not
possess an onboard clock. The computer clock is less accurate and has more
jitter than the onboard clock, and is generally limited to sampling rates below
500 Hz. The computer clock is referred to as the software clock in this guide.

External Clock. An external clock is often used when the sampling rate is low and
not constant. For example, an external clock source is often used in automotive
applications where samples are acquired as a function of crank angle.
4

The Analog Input Subsystem
Channel Configuration
You can configure input channels in one of these two ways:

• Differential

• Single-ended

Your choice of input channel configuration might depend on whether the input
signal is floating or grounded.

A floating signal uses an isolated ground reference and is not connected to the
building ground. As a result, the input signal and hardware device are not
connected to a common reference, which can cause the input signal to exceed
the valid range of the hardware device. To circumvent this problem, you must
connect the signal to the onboard ground of the device. Examples of floating
signal sources include ungrounded thermocouples and battery devices.

A grounded signal is connected to the building ground. As a result, the input
signal and hardware device are connected to a common reference. Examples of
grounded signal sources include nonisolated instrument outputs and devices
that are connected to the building power system.

Note For more information about channel configuration, refer to your
hardware documentation.

Differential Inputs
When you configure your hardware for differential input, there are two signal
wires associated with each input signal — one for the input signal and one for
the reference (return) signal. The measurement is the difference in voltage
between the two wires, which helps reduce noise and any voltage that is
common to both wires.

As shown below, the input signal is connected to the positive amplifier socket
(labeled +) and the return signal is connected to the negative amplifier socket
1-25

1 Introduction to Data Acquisition

1-2
(labeled –). The amplifier has a third connector that allows these signals to be
referenced to ground.

National Instruments recommends that you use differential inputs under any
of these conditions:

• The input signal is low level (less than 1 volt).

• The leads connecting the signal are greater than 10 feet.

• The input signal requires a separate ground-reference point or return signal.

• The signal leads travel through a noisy environment.

Single-Ended Inputs
When you configure your hardware for single-ended input, there is one signal
wire associated with each input signal, and each input signal is connected to
the same ground. Single-ended measurements are more susceptible to noise
than differential measurements because of differences in the signal paths.

Vout

Input signal

Return signal

Amplifier
6

The Analog Input Subsystem
As shown below, the input signal is connected to the positive amplifier socket
(labeled +) and the ground is connected to the negative amplifier socket
(labeled –).

National Instruments suggests that you can use single-ended inputs under any
of these conditions:

• The input signal is high level (greater than 1 volt).

• The leads connecting the signal are less than 10 feet.

• The input signal can share a common reference point with other signals.

You should use differential input connectors for any input signal that does not
meet the preceding conditions. You can configure many National Instruments
boards for two different types of single-ended connections:

• Referenced single-ended (RSE) connection

The RSE configuration is used for floating signal sources. In this case, the
hardware device itself provides the reference ground for the input signal.

• Nonreferenced single-ended (NRSE) connection

The NRSE input configuration is used for grounded signal sources. In this
case, the input signal provides its own reference ground and the hardware
device should not supply one.

Refer to your National Instruments hardware documentation for more
information about RSE and NRSE connections.

Vout

Input signal

Ground

Amplifier
1-27

1 Introduction to Data Acquisition

1-2
Transferring Data from Hardware to System
Memory
The transfer of acquired data from the hardware to system memory follows
these steps:

1 Acquired data is stored in the hardware’s first-in first-out (FIFO) buffer.

2 Data is transferred from the FIFO buffer to system memory using interrupts
or DMA.

These steps happen automatically. Typically, all that’s required from you is
some initial configuration of the hardware device when it is installed.

The FIFO Buffer
The FIFO buffer is used to temporarily store acquired data. The data is
temporarily stored until it can be transferred to system memory. The process
of transferring data into and out of an analog input FIFO buffer is given below:

1 The FIFO buffer stores newly acquired samples at a constant sampling rate.

2 Before the FIFO buffer is filled, the software starts removing the samples.
For example, an interrupt is generated when the FIFO is half full, and
signals the software to extract the samples as quickly as possible.

3 Because servicing interrupts or programming the DMA controller can take
up to a few milliseconds, additional data is stored in the FIFO for future
retrieval. For a larger FIFO buffer, longer latencies can be tolerated.

4 The samples are transferred to system memory via the system bus (for
example, PCI bus or AT bus). After the samples are transferred, the
software is free to perform other tasks until the next interrupt occurs. For
example, the data can be processed or saved to a disk file. As long as the
average rates of storing and extracting data are equal, acquired data will not
be missed and your application should run smoothly.

Interrupts
The slowest but most common method to move acquired data to system
memory is for the board to generate an interrupt request (IRQ) signal. This
signal can be generated when one sample is acquired or when multiple samples
8

The Analog Input Subsystem
are acquired. The process of transferring data to system memory via interrupts
is given below:

1 When data is ready for transfer, the CPU stops whatever it is doing and runs
a special interrupt handler routine that saves the current machine registers,
and then sets them to access the board.

2 The data is extracted from the board and placed into system memory.

3 The saved machine registers are restored, and the CPU returns to the
original interrupted process.

The actual data move is fairly quick, but there is a lot of overhead time spent
saving, setting up, and restoring the register information. Therefore,
depending on your specific system, transferring data by interrupts might not
be a good choice when the sampling rate is greater than around 5 kHz.

DMA
Direct memory access (DMA) is a system whereby samples are automatically
stored in system memory while the processor does something else. The process
of transferring data via DMA is given below:

1 When data is ready for transfer, the board directs the system DMA
controller to put it into in system memory as soon as possible.

2 As soon as the CPU is able (which is usually very quickly), it stops
interacting with the data acquisition hardware and the DMA controller
moves the data directly into memory.

3 The DMA controller gets ready for the next sample by pointing to the next
open memory location.

4 The previous steps are repeated indefinitely, with data going to each open
memory location in a continuously circulating buffer. No interaction
between the CPU and the board is needed.

Your computer supports several different DMA channels. Depending on your
application, you can use one or more of these channels, For example,
simultaneous input and output with a sound card requires one DMA channel
for the input and another DMA channel for the output.
1-29

1 Introduction to Data Acquisition

1-3
Making Quality Measurements
For most data acquisition applications, you need to measure the signal
produced by a sensor at a specific rate.

In many cases, the sensor signal is a voltage level that is proportional to the
physical phenomena of interest (for example, temperature, pressure, or
acceleration). If you are measuring slowly changing (quasi-static) phenomena
like temperature, a slow sampling rate usually suffices. If you are measuring
rapidly changing (dynamic) phenomena like vibration or acoustic
measurements, a fast sampling rate is required.

To make high-quality measurements, you should follow these rules:

• Maximize the precision and accuracy

• Minimize the noise

• Match the sensor range to the A/D range

Accuracy and Precision
Whenever you acquire measured data, you should make every effort to
maximize its accuracy and precision. The quality of your measurement
depends on the accuracy and precision of the entire data acquisition system,
and can be limited by such factors as board resolution or environmental noise.

In general terms, the accuracy of a measurement determines how close the
measurement comes to the true value. Therefore, it indicates the correctness of
the result. The precision of a measurement reflects how exactly the result is
determined without reference to what the result means. The relative precision
indicates the uncertainty in a measurement as a fraction of the result.

For example, suppose you measure a table top with a meter stick and find its
length to be 1.502 meters. This number indicates that the meter stick (and your
eyes) can resolve distances down to at least a millimeter. Under most
circumstances, this is considered to be a fairly precise measurement with a
relative precision of around 1/1500. However, suppose you perform the
measurement again and obtain a result of 1.510 meters. After careful
consideration, you discover that your initial technique for reading the meter
stick was faulty because you did not read it from directly above. Therefore, the
first measurement was not accurate.
0

Making Quality Measurements
Precision and accuracy are illustrated below.

For analog input subsystems, accuracy is usually limited by calibration errors
while precision is usually limited by the A/D converter. Accuracy and precision
are discussed in more detail below.

Accuracy
Accuracy is defined as the agreement between a measured quantity and the
true value of that quantity. Every component that appears in the analog signal
path affects system accuracy and performance. The overall system accuracy is
given by the component with the worst accuracy.

Not precise
Not accurate

Precise
Not accurate

Not precise
Accurate

Precise
Accurate
1-31

1 Introduction to Data Acquisition

1-3
For data acquisition hardware, accuracy is often expressed as a percent or a
fraction of the least significant bit (LSB). Under ideal circumstances, board
accuracy is typically ±0.5 LSB. Therefore, a 12 bit converter has only 11 usable
bits.

Many boards include a programmable gain amplifier, which is located just
before the converter input. To prevent system accuracy from being degraded,
the accuracy and linearity of the gain must be better than that of the A/D
converter. The specified accuracy of a board is also affected by the sampling
rate and the settling time of the amplifier. The settling time is defined as the
time required for the instrumentation amplifier to settle to a specified
accuracy. To maintain full accuracy, the amplifier output must settle to a level
given by the magnitude of 0.5 LSB before the next conversion, and is on the
order of several tenths of a millisecond for most boards.

Settling time is a function of sampling rate and gain value. High rate, high gain
configurations require longer settling times while low rate, low gain
configurations require shorter settling times.

Precision
The number of bits used to represent an analog signal determines the precision
(resolution) of the device. The more bits provided by your board, the more
precise your measurement will be. A high precision, high resolution device
divides the input range into more divisions thereby allowing a smaller
detectable voltage value. A low precision, low resolution device divides the
input range into fewer divisions thereby increasing the detectable voltage
value.

The overall precision of your data acquisition system is usually determined by
the A/D converter, and is specified by the number of bits used to represent the
analog signal. Most boards use 12 or 16 bits. The precision of your
measurement is given by

The precision in volts is given by

Precision one part in 2number of bits
=

Precision voltage range 2number of bits⁄=
2

Making Quality Measurements
For example, if you are using a 12 bit A/D converter configured for a 10 volt
range, then

This means that the converter can detect voltage differences at the level of
0.00244 volts (2.44 mV).

How Are Range, Gain, and Measurement Precision Related?
When you configure the input range and gain of your analog input subsystem,
the end result should maximize the measurement resolution and minimize the
chance of an overrange condition. The actual input range is given by the
formula

Actual input range = Input range/Gain

The relationship between gain, actual input range, and precision for a unipolar
and bipolar signal having an input range of 10 V is shown below.

Table 1-2: Relationship Between Input Range, Gain, and Precision

Input Range Gain Actual Input Range Precision (12 Bit A/D)

0 to 10 V 1.0 0 to 10 V 2.44 mV

2.0 0 to 5 V 1.22 mV

5.0 0 to 2 V 0.488 mV

10.0 0 to 1 V 0.244 mV

-5 to 5 V 0.5 -10 to 10 V 4.88 mV

1.0 -5 to 5 V 2.44 mV

2.0 -2.5 to 2.5 V 1.22 mV

5.0 -1.0 to 1.0 V 0.488 mV

10.0 -0.5 to 0.5 V 0.244 mV

Precision 10 volts 212⁄=
1-33

1 Introduction to Data Acquisition

1-3
As shown in the table, the gain affects the precision of your measurement. If
you select a gain that decreases the actual input range, then the precision
increases. Conversely, if you select a gain that increases the actual input range,
then the precision decreases. This is because the actual input range varies but
the number of bits used by the A/D converter remains fixed.

Note With the Data Acquisition Toolbox, you do not have to specify the range
and gain. Instead, you simply specify the actual input range desired.

Noise
Noise is considered to be any measurement that is not part of the phenomena
of interest. Noise can be generated within the electrical components of the
input amplifier (internal noise), or it can be added to the signal as it travels
down the input wires to the amplifier (external noise). Techniques that you can
use to reduce the effects of noise are described below.

Removing Internal Noise
Internal noise arises from thermal effects in the amplifier. Amplifiers typically
generate a few microvolts of internal noise, which limits the resolution of the
signal to this level. The amount of noise added to the signal depends on the
bandwidth of the input amplifier.

To reduce internal noise, you should select an amplifier with a bandwidth that
closely matches the bandwidth of the input signal.

Removing External Noise
External noise arises from many sources. For example, many data acquisition
experiments are subject to 60 Hz noise generated by a.c. power circuits. This
type of noise is referred to as pick-up or hum, and appears as a sinusoidal
interference signal in the measurement circuit. Another common interference
source is fluorescent lighting. These lights generate an arc at twice the power
line frequency (120 Hz).

Noise is added to the acquisition circuit from these external sources because
the signal leads act as aerials picking up environmental electrical activity.
Much of this noise is common to both signal wires. To remove most of this
common-mode voltage, you should
4

Making Quality Measurements
• Configure the input channels in differential mode. Refer to “Channel
Configuration” on page 1-25 for more information about channel
configuration.

• Use signal wires that are twisted together rather than separate.

• Keep the signal wires as short as possible.

• Keep the signal wires as far away as possible from environmental electrical
activity.

Filtering
Filtering also reduces signal noise. For many data acquisition applications, a
low-pass filter is beneficial. As the name suggests, a low-pass filter passes the
lower frequency components but attenuates the higher frequency components.
The cut-off frequency of the filter must be compatible with the frequencies
present in the signal of interest and the sampling rate used for the A/D
conversion.

A low-pass filter that’s used to prevent higher frequencies from introducing
distortion into the digitized signal is known as an antialiasing filter if the
cut-off occurs at the Nyquist frequency. That is, the filter removes frequencies
greater than one-half the sampling frequency. These filters generally have a
sharper cut-off than the normal low-pass filter used to condition a signal.
Antialiasing filters are specified according to the sampling rate of the system
and there must be one filter per input signal.

Matching the Sensor Range and A/D Converter
Range
When sensor data is digitized by an A/D converter, you must be aware of these
two issues:

• The expected range of the data produced by your sensor. This range depends
on the physical phenomena you are measuring and the output range of the
sensor.

• The range of your A/D converter. For many devices, the hardware range is
specified by the gain and polarity.

You should select the sensor and hardware ranges such that the maximum
precision is obtained, and the full dynamic range of the input signal is covered.
1-35

1 Introduction to Data Acquisition

1-3
For example, suppose you are using a microphone with a dynamic range of 20
dB to 140 dB and an output sensitivity of 50 mV/Pa. If you are measuring street
noise in your application, then you might expect that the sound level never
exceeds 80 dB, which corresponds to a sound pressure magnitude of 200 mPa
and a voltage output from the microphone of 10 mV. Under these conditions,
you should set the input range of your data acquisition card for a maximum
signal amplitude of 10 mV, or a little more.

How Fast Should a Signal Be Sampled?
Whenever a continuous signal is sampled, some information is lost. The key
objective is to sample at a rate such that the signal of interest is well
characterized and the amount of information lost is minimized.

If you sample at a rate that is too slow, then the signal is undersampled, and
aliasing can occur. Aliasing can occur for both rapidly varying signals and
slowly varying signals. For example, suppose you are measuring temperature
once a minute. If your acquisition system is picking up a 60 Hz hum from an
a.c power supply, then that hum will appear as constant noise level if you are
sampling at 30 Hz.

Aliasing occurs when the sampled signal contains frequency components
greater than one-half the sampling rate. The frequency components could
originate from the signal of interest in which case you are undersampling and
should increase the sampling rate. The frequency components could also
originate from noise in which case you might need to condition the signal using
a filter. The rule used to prevent aliasing is given by the Nyquist theorem,
which states that

• An analog signal can be uniquely reconstructed, without error, from samples
taken at equal time intervals.

• The sampling rate must be equal to or greater than twice the highest
frequency component in the analog signal. A frequency of one-half the
sampling rate is called the Nyquist frequency.

However, if your input signal is corrupted by noise, then aliasing can still
occur.

For example, suppose you configure your A/D converter to sample at a rate of
4 samples per second (4 S/s or 4 Hz), and the signal of interest is a 1 Hz sine
wave. Because the signal frequency is one-fourth the sampling rate, then
according to the Nyquist theorem, it should be completely characterized.
6

Making Quality Measurements
However, if a 5 Hz sine wave is also present, then these two signals cannot be
distinguished. In other words, the 1 Hz sine wave produces the same samples
as the 5 Hz sine wave when the sampling rate is 4 S/s. This situation is shown
below.

In a real-world data acquisition environment, you might need to condition the
signal by filtering out the high frequency components.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec.)

A
m

pl
itu

de

Sample period
1-37

1 Introduction to Data Acquisition

1-3
Even though the samples appear to represent a sine wave with a frequency of
one-fourth the sampling rate, the actual signal could be any sine wave with a
frequency of

where n is zero or any positive integer. For this example, the actual signal
could be at a frequency of 3 Hz, 5 Hz, 7 Hz, 9 Hz, and so on. The relationship
0.25 x (Sampling rate) is called the alias of a signal that may be at another
frequency. In other words, aliasing occurs when one frequency assumes the
identity of another frequency.

If you sample the input signal at least twice as fast as the highest frequency
component, then that signal might be uniquely characterized, but this rate
would not mimic the waveform very closely. As shown below, to get an accurate
picture of the waveform, you need a sampling rate of roughly 10 to 20 times the
highest frequency.

n 0.25±() Sampling rate()×

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Time (sec.)

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Time (sec.)

A
m

pl
itu

de
8

Making Quality Measurements
As shown in the top figure, the low sampling rate produces a sampled signal
that appears to be a triangular waveform. As shown in the bottom figure, a
higher fidelity sampled signal is produced when the sampling rate is higher. In
the latter case, the sampled signal actually looks like a sine wave.

How Can Aliasing be Eliminated?
The primary considerations involved in antialiasing are the sampling rate of
the A/D converter and the frequencies present in the sampled data. To
eliminate aliasing, you must

• Establish the useful bandwidth of the measurement.

• Select a sensor with sufficient bandwidth.

• Select a low-pass anti-aliasing analog filter that can eliminate all
frequencies exceeding this bandwidth.

• Sample the data at a rate at least twice that of the filter’s upper cutoff
frequency.
1-39

1 Introduction to Data Acquisition

1-4
Selected Bibliography
1 Transducer Interfacing Handbook — A Guide to Analog Signal

Conditioning, edited by Daniel H. Sheingold; Analog Devices Inc., Norwood,
Massachusetts, 1980.

2 Bentley, John P., Principles of Measurement Systems, Second Edition;
Longman Scientific and Technical, Harlow, Essex, UK, 1988.

3 Bevington, Philip R., Data Reduction and Error Analysis for the Physical
Sciences; McGraw-Hill, New York, NY, 1969.

4 Carr, Joseph J., Sensors; Prompt Publications, Indianapolis, Indiana, 1997.

5 The Measurement, Instrumentation, and Sensors Handbook, edited by John
G. Webster; CRC Press, Boca Raton, FL, 1999.

6 PCI-MIO E Series User Manual, January 1997 Edition; Part Number
320945B-01, National Instruments, Austin, TX, 1997.
0

2

Getting Started

This chapter provides the information you need to get started with the Data Acquisition Toolbox. The
sections are as follows.

Installation Information
(p. 2-2)

How to determine whether the toolbox is installed on your system

Toolbox Components (p. 2-3) The M-files and hardware driver adaptors that compose the toolbox

Accessing Your Hardware
(p. 2-10)

Examples that show you how to acquire data, output data, and read
and write digital values

Understanding the Toolbox
Capabilities (p. 2-14)

Resources to help you understand the toolbox capabilities including
demos and documentation examples

Examining Your Hardware
Resources (p. 2-16)

Return hardware-related information visible to the toolbox including
the installed adaptors and the syntax for creating device objects

Getting Help (p. 2-19) Get help using the Help browser, M-file help, and other methods

2 Getting Started

2-2
Installation Information
To acquire live, measured data into the MATLAB environment, or to output
data from the MATLAB environment, you must install these components:

• MATLAB 7.0 (Release 14)

• The Data Acquisition Toolbox Version 2.5

• A supported data acquisition device — for a complete listing of all supported
devices, visit the Data Acquisition Toolbox section of the MathWorks Web
site at http://www.mathworks.com/products/daq/

• Software such as drivers and support libraries, as required by your data
acquisition device

Toolbox Installation
To determine if the Data Acquisition Toolbox is installed on your system, type

ver

at the MATLAB prompt. MATLAB displays information about the versions of
MATLAB you are running, including a list of installed add-on products and
their version numbers. Check the list to see if the Data Acquisition Toolbox
appears. For information about installing the toolbox, see the MATLAB
Installation Guide for your platform.

If you experience installation difficulties and have Web access, look for the
license manager and installation information at the MathWorks Web site
(http://www.mathworks.com).

Hardware and Driver Installation
Installation of your hardware device, hardware drivers, and any other
device-specific software is described in the documentation provided by your
hardware vendor.

Note You need to install all necessary device-specific software provided by
your hardware vendor in addition to the Data Acquisition Toolbox.

Toolbox Components
Toolbox Components
The Data Acquisition Toolbox consists of three distinct components: M-file
functions, the data acquisition engine, and hardware driver adaptors. As
shown below, these components allow you to pass information between
MATLAB and your data acquisition hardware.

Data Acquisition Toolbox

 Data acquisition engine

Hardware driver

MATLAB

M-file functions

Hardware

Hardware driver adaptors

Disk file

Interactive functions and data

Property values, data, and events

Property values, data, and events

Sensors

Actuators
2-3

2 Getting Started

2-4
The preceding diagram illustrates how information flows from component to
component. Information consists of

• Property values

You can control the behavior of your data acquisition application by
configuring property values. In general, you can think of a property as a
characteristic of the toolbox or of the hardware driver that can be
manipulated to suit your needs.

• Data

You can acquire data from a sensor connected to an analog input subsystem
and store it in MATLAB, or output data from MATLAB to an actuator
connected to an analog output subsystem. Additionally you can transfer
values (1’s and 0’s) between MATLAB and a digital I/O subsystem.

• Events

An event occurs at a particular time after a condition is met and might result
in one or more callbacks that you specify. Events can be generated only after
you configure the associated properties. Some of the ways you can use events
include initiating analysis after a predetermined amount of data is acquired,
or displaying a message to the MATLAB workspace after an error occurs.

M-File Functions
To perform any task with your data acquisition application, you must call
M-file functions from the MATLAB environment. Among other things, these
functions allow you to

• Create device objects, which provide a gateway to your hardware’s
capabilities and allow you to control the behavior of your application.

• Acquire or output data.

• Configure property values.

• Evaluate your acquisition status and hardware resources.

For a listing of all Data Acquisition Toolbox functions, refer to Chapter 10,
“Function Reference.” You can also display all the toolbox functions by typing

help daq

Toolbox Components
The Data Acquisition Engine
The data acquisition engine (or just engine) is a MEX-file dynamic link library
(DLL) file that

• Stores the device objects and associated property values that control your
data acquisition application

• Controls the synchronization of events

• Controls the storage of acquired or queued data

While the engine performs these tasks, you can use MATLAB for other tasks
such as analyzing acquired data. In other words, the engine and MATLAB are
asynchronous. The relationship between acquiring data, outputting data, and
data flow is described below.

The Flow of Acquired Data
Acquiring data means that data is flowing from your hardware device into the
data acquisition engine where it is temporarily stored in memory. The data is
stored temporarily because it can be overwritten. The rate at which the data is
overwritten depends on several factors including the available memory, the
rate at which data is acquired, and the number of hardware channels from
which data is acquired.

The stored data is not automatically available in the MATLAB workspace.
Instead, you must explicitly extract data from the engine using the getdata
function.
2-5

2 Getting Started

2-6
The flow of acquired data consists of these two independent steps:

1 Data acquired from the hardware is stored in the engine.

2 Data is extracted from the engine and stored in MATLAB, or output to a disk
file.

These two steps are illustrated below.

Data Acquisition Toolbox

 Data acquisition engine

MATLAB

Hardware

Disk file

2 Extract data from the engine

1 Fill engine with acquired data

 Acquired data

Sensors

Toolbox Components
The Flow of Output Data
Outputting data means that data is flowing from the data acquisition engine to
the hardware device. However, before data is output, you must queue it in the
engine with the putdata function. The amount of data that you can queue
depends on several factors including the available memory, the number of
hardware channels to which data is output, and the size of each data sample.

The flow of output data consists of these two independent steps:

1 Data from MATLAB is queued in the engine.

2 Data queued in the engine is output to the hardware.

These two steps are illustrated below.

Data Acquisition Toolbox

 Data acquisition engine

MATLAB

Hardware

1 Queue data into the engine

2 Output data to the hardware

Queued data

Actuators
2-7

2 Getting Started

2-8
The Hardware Driver Adaptor
The hardware driver adaptor (or just adaptor) is the interface between the data
acquisition engine and the hardware driver. The adaptor’s main purpose is to
pass information between MATLAB and your hardware device via its driver.

Hardware drivers are provided by your device vendor. For example, to acquire
data using a National Instruments board, the appropriate version of the
NI-DAQ driver must be installed on your platform. Hardware drivers are not
installed as part of the Data Acquisition Toolbox with the exception of a special
parallel port driver that allows access to the port’s protected memory
addresses. Additionally, a suitable driver is usually installed on PCs that are
equipped with a sound card. For the remaining supported devices, the drivers
must be installed.

The vendors/device types and the associated adaptor names used by the toolbox
are listed below.

Note To interface unsupported hardware devices to the toolbox, use the Data
Acquisition Toolbox Adaptor Kit, which is installed with the toolbox. To get
started with the adaptor kit, read the Data Acquisition Toolbox Adaptor Kit
User’s Guide.

Table 2-1: Supported Vendors/Device Types and Adaptor Names

Vendor/Device Type Adaptor Name

Advantech advantech

Agilent Technologies hpe1432

Keithley keithley

Measurement Computing mcc

National Instruments nidaq

Parallel port parallel

Windows sound cards winsound

Toolbox Components
As described in “Examining Your Hardware Resources” on page 2-16, you can
list the supported adaptor names with the daqhwinfo function.
2-9

2 Getting Started

2-1
Accessing Your Hardware
Perhaps the most effective way to get started with the Data Acquisition
Toolbox is to connect to your hardware, and input or output data. This section
provides simple examples that show you how to

• Acquire data from analog input channels

• Output data to analog output channels

• Read values from and write values to digital I/O lines

Each example illustrates a typical data acquisition session. The data
acquisition session comprises all the steps you are likely to take when
acquiring or outputting data using a supported hardware device. You should
keep these steps in mind when constructing your own data acquisition
applications.

Note that the analog input and analog output examples use a sound card, while
the digital I/O example uses a National Instruments PCI-6024E board. If you
are using a different supported hardware device, you should modify the
adaptor name and the device ID supplied to the creation function as needed.

If you want detailed information about any functions that are used, refer to
Chapter 10, “Function Reference.” If you want detailed information about any
properties that are used, refer to Chapter 11, “Base Property Reference.”

Acquiring Data
If you have a sound card installed, you can run the following example, which
acquires one second of data from two analog input hardware channels, and
then plots the acquired data.

You should modify this example to suit your specific application needs. If you
want detailed information about acquiring data, refer to Chapter 5, “Doing
More with Analog Input.”

1 Create a device object — Create the analog input object ai for a sound
card.

ai = analoginput('winsound');

2 Add channels — Add two hardware channels to ai.

addchannel(ai,1:2);
0

Accessing Your Hardware
3 Configure property values — Configure the sampling rate to 44.1 kHz and
collect 1 second of data (44,100 samples) for each channel.

set(ai,'SampleRate',44100)
set(ai,'SamplesPerTrigger',44100)

4 Acquire data — Start the acquisition. When all the data is acquired, ai
automatically stops executing.

start(ai)
data = getdata(ai);
plot(data)

5 Clean up — When you no longer need ai, you should remove it from memory
and from the MATLAB workspace.

delete(ai)
clear ai

Outputting Data
If you have a sound card installed, you can run the following example, which
outputs 1 second of data to two analog output hardware channels.

You should modify this example to suit your specific application needs. If you
want detailed information about outputting data, refer to Chapter 6, “Analog
Output.”

1 Create a device object — Create the analog output object ao for a sound
card.

ao = analogoutput('winsound');

2 Add channels — Add two hardware channels to ao.

addchannel(ao,1:2);

3 Configure property values — Configure the sampling rate to 44.1 kHz for
each channel.

set(ao,'SampleRate',44100)
2-11

2 Getting Started

2-1
4 Output data — Create 1 second of output data, and queue the data in the
engine for eventual output to the analog output subsystem. You must queue
one column of data for each hardware channel added.

data = sin(linspace(0,2*pi*500,44100)');
putdata(ao,[data data])

Start the output. When all the data is output, ao automatically stops
executing.

start(ao)

5 Clean up — When you no longer need ao, you should remove it from memory
and from the MATLAB workspace.

delete(ao)
clear ao

Reading and Writing Digital Values
If you have a supported National Instruments board with at least eight digital
I/O lines, you can run the following example, which outputs digital values, and
then reads back those values.

You should modify this example to suit your specific application needs. If you
want detailed information about reading and writing digital values, refer to
Chapter 7, “Digital Input/Output.”

1 Create a device object — Create the digital I/O object dio for a National
Instruments PCI-6024E board with hardware ID 1.

dio = digitalio('nidaq',1);

2 Add lines — Add eight hardware lines to dio, and configure them for output.

addline(dio,0:7,'out');

3 Read and write values — Create an array of output values, and write the
values to the digital I/O subsystem. Note that reading and writing digital I/O
line values typically does not require that you configure specific property
values.

pval = [1 1 1 1 0 1 0 1];
putvalue(dio,pval)
gval = getvalue(dio);
2

Accessing Your Hardware
4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio

Note Digital line values are usually not transferred at a specific rate.
Although some specialized boards support clocked I/O, the Data Acquisition
Toolbox does not support this functionality.
2-13

2 Getting Started

2-1
Understanding the Toolbox Capabilities
In addition to the printed and online documentation, the Data Acquisition
Toolbox provides these resources to help you understand the product
capabilities:

• The Contents M-file

• Documentation examples

• The Quick Reference Guide

• Demos

The Contents M-File
The Contents M-file lists the toolbox functions and demos. You can display this
information by typing

help daq

Documentation Examples
This guide provides detailed examples that show you how to acquire or output
data. These examples are collected in the example index, which is available
through the Help browser

Some examples are constructed as mini-applications that illustrate one or two
important features of the toolbox and serve as templates so you can see how to
build applications that suit your specific needs. These examples are included
as toolbox M-files and are treated as demos. You can list all Data Acquisition
Toolbox demos by typing

help daqdemos

All documentation example M-files begin with daqdoc. To run an example, type
the M-file name at the command line. Note that most analog input (AI) and
analog output (AO) examples are written for sound cards. To use these
examples with your hardware device, you should modify the adaptor name and
the device ID supplied to the creation function as needed.

Additionally, most documentation examples are written for clocked
subsystems. However, some supported hardware devices — particularly
Measurement Computing devices — do not possess onboard clocks. If the AI or
4

Understanding the Toolbox Capabilities
AO subsystem of your hardware device does not have an onboard clock, then
these examples will not work. To use the documentation examples, you can

• Input single values using the getsample function, or output single values
using the putsample function.

• Configure the ClockSource property to Software.

The Quick Reference Guide
The Quick Reference Guide provides a complete overview of the toolbox
capabilities, functions, and properties. You might find it useful to print this
guide and keep it handy when using the toolbox. You can access this guide
through the Help browser.

Demos
The toolbox includes a large collection of tutorial demos, which you can access
through the Help browser Demos pane. Use the following command to open the
Help browser to the toolbox demos.

demo toolbox 'Data Acquisition'

Note that the analog input and analog output tutorials require that you have a
sound card installed. The digital I/O tutorials require that you have a
supported National Instruments board with digital I/O capabilities.
2-15

2 Getting Started

2-1
Examining Your Hardware Resources
You can examine the data acquisition hardware resources visible to the toolbox
with the daqhwinfo function. Hardware resources include installed boards,
hardware drivers, and adaptors. The information returned by daqhwinfo
depends on the supplied arguments, and is divided into these three categories:

• General toolbox information

• Adaptor-specific information

• Device object information

If you configure hardware parameters using a vendor tool such as National
Instruments’ Measurement and Automation Explorer or Measurement
Computings’ InstaCal, daqhwinfo will return this configuration information.
For example, if you configure your Measurement Computing device for 16
single-ended channels using InstaCal, daqhwinfo returns this configuration.
However, the toolbox does not preserve configuration information that is not
directly associated with your hardware. For example, channel name
information is not preserved. Refer to Appendix A, “Troubleshooting Your
Hardware” for more information about using vendor tools.

General Toolbox Information
To display general information about the Data Acquisition Toolbox

out = daqhwinfo
out =
 ToolboxName: 'Data Acquisition Toolbox'
 ToolboxVersion: '2.2 (R13)'
 MATLABVersion: '6.5 (R13)'
 InstalledAdaptors: {4x1 cell}

The InstalledAdaptors field lists the hardware driver adaptors installed on
your system. To display the installed adaptors

out.InstalledAdaptors
ans =
 'mcc'
 'nidaq'
 'parallel'
 'winsound'
6

Examining Your Hardware Resources
This information tells you that an adaptor is available for Measurement
Computing and National Instruments devices, parallel ports, and sound cards.

Note The list of installed adaptors might be different for you platform.
Toolbox adaptors are available to you only if the associated hardware driver is
installed.

Adaptor-Specific Information
To display hardware information for a particular vendor, you must supply the
adaptor name as an argument to daqhwinfo. The supported vendors and
adaptor names are given in “The Hardware Driver Adaptor” on page 2-8. For
example, to display hardware information for the winsound adaptor

out = daqhwinfo('winsound')
out =
AdaptorDllName: 'd:\v6\toolbox\daq\daq\private\mwwinsound.dll'
AdaptorDllVersion: 'Version 2.2 (R13) 01-Jul-2002'
AdaptorName: 'winsound'
BoardNames: {'AudioPCI Record'}
InstalledBoardIds: {'0'}
ObjectConstructorName:{'analoginput('winsound',0)'[1x26 char]}

The ObjectConstructorName field lists the subsystems supported by the
installed sound cards, and the syntax for creating a device object associated
with a given subsystem. To display the device object constructor names
available for the AudioPCI Record board

out.ObjectConstructorName(:)
ans =
 'analoginput('winsound',0)'
 'analogoutput('winsound',0)'

This information tells you that the sound card supports analog input and
analog output objects. To create an analog input object for the sound card

ai = analoginput('winsound');

To create an analog output object for the sound card

ao = analogoutput('winsound');
2-17

2 Getting Started

2-1
Device Object Information
To display hardware information for a specific device object, you supply the
device object as an argument to daqhwinfo. The hardware information for the
analog input object ai created in the preceding section is given below.

out = daqhwinfo(ai)
out =

AdaptorName: 'winsound'
 Bits: 16
 Coupling: {'AC Coupled'}
 DeviceName: 'AudioPCI Record'
 DifferentialIDs: []
 Gains: []
 ID: '0'
 InputRanges: [-1 1]
 MaxSampleRate: 44100
 MinSampleRate: 8000
 NativeDataType: 'int16'
 Polarity: {'Bipolar'}
 SampleType: 'SimultaneousSample'
 SingleEndedIDs: [1 2]
 SubsystemType: 'AnalogInput'
 TotalChannels: 2
 VendorDriverDescription: 'Windows Multimedia Driver'
 VendorDriverVersion: '5.0'

Among other things, this information tells you that the minimum sampling
rate is 8 kHz, the maximum sampling rate is 44.1 kHz, and there are two
hardware channels that you can add to the analog input object.

Alternatively, you can return hardware information via the Workspace
browser by right-clicking a device object, and selecting Explore -> Display
Hardware Info from the context menu.
8

Getting Help
Getting Help
In addition to this guide, the Data Acquisition Toolbox provides you with these
help resources:

• The daqhelp function

• The propinfo function

The daqhelp Function
You can use the daqhelp function to

• Display command line help for functions and properties

• List all the functions and properties associated with a specific device object

A device object need not exist for you to obtain this information. For example,
to display all the functions and properties associated with an analog input
object, as well as the constructor M-file help

daqhelp analoginput

To display help for the SampleRate property

daqhelp SampleRate

You can also display help for an existing device object. For example, to display
help for the BitsPerSample property for an analog input object associated with
a sound card

ai = analoginput('winsound');
out = daqhelp(ai,'BitsPerSample');

Alternatively, you can display help via the Workspace browser by
right-clicking a device object, and selecting Explore -> DAQ Help from the
context menu.
2-19

2 Getting Started

2-2
The propinfo Function
You can use the propinfo function to return the characteristics of Data
Acquisition Toolbox properties. For example, you can find the default value for
any property using this function. propinfo returns a structure containing the
fields shown below.

Table 2-2: propinfo Fields

Field Name Description

Type The property data type. Possible values are callback,
any, double, and string.

Constraint The type of constraint on the property value. Possible
values are callback, bounded, enum, and none.

ConstraintValue The property value constraint. The constraint can be
a range of valid values or a list of valid string values.

DefaultValue The property default value.

ReadOnly If the property is read-only, a 1 is returned.
Otherwise, a 0 is returned.

ReadOnlyRunning If the property is read-only while the device object is
running, a 1 is returned. Otherwise, a 0 is returned.

DeviceSpecific If the property is device-specific, a 1 is returned. If a 0
is returned, the property is supported for all device
objects of a given type.
0

Getting Help
For example, to return the characteristics for all the properties associated with
the analog input object ai created in the preceding section

AIinfo = propinfo(ai);

The characteristics for the TriggerType property are displayed below.

AIinfo.TriggerType
ans =
 Type: 'string'
 Constraint: 'Enum'
 ConstraintValue: {3x1 cell}
 DefaultValue: 'Immediate'
 ReadOnly: 0
 ReadOnlyRunning: 1
 DeviceSpecific: 0

This information tells you that

• The property value data type is a string.

• The property value is constrained as an enumerated list of values.

• There are three possible property values.

• The default value is Immediate.

• The property is not read-only.

• You cannot configure the property while the device object is running.

• The property is supported for all analog input objects.

To display the property value constraints

AIinfo.TriggerType.ConstraintValue
ans =
 'Manual'
 'Immediate'
 'Software'
2-21

2 Getting Started

2-2
2

3

The Data Acquisition
Session

The data acquisition session consists of all the steps you are likely to take when acquiring or
outputting data. These steps are described in the following sections.

Overview (p. 3-2) Description of the data acquisition session including a brief example

Creating a Device Object
(p. 3-4)

Create a MATLAB object that represents the hardware subsystem

Adding Channels or Lines
(p. 3-8)

Add hardware channels or hardware lines to the device object

Configuring and Returning
Properties (p. 3-12)

Define the device object behavior by assigning values to properties

Acquiring and Outputting
Data (p. 3-22)

Execute the device object and acquire or output data using the
previously added channels

Cleaning Up (p. 3-25) Remove the device object from memory and from the workspace

3 The Data Acquisition Session

3-2
Overview
The data acquisition session consists of all the steps you are likely to take when
acquiring or outputting data. These steps are

1 Create a device object — You create a device object using the analoginput,
analogoutput, or digitalio creation function. Device objects are the basic
toolbox elements you use to access your hardware device.

2 Add channels or lines — After a device object is created, you must add
channels or lines to it. Channels are added to analog input and analog
output objects, while lines are added to digital I/O objects. Channels and
lines are the basic hardware device elements with which you acquire or
output data.

3 Configure properties — To establish the device object behavior, you assign
values to properties using the set function or dot notation.

You can configure many of the properties at any time. However, some
properties are configurable only when the device object is not running.
Conversely, depending on your hardware settings and the requirements of
your application, you might be able to accept the default property values and
skip this step.

4 Acquire or output data — To acquire or output data, you must execute the
device object with the start function. While the device object is running, it
behaves according to the previously configured or default property values.

After data is acquired, you must extract it from the engine with the getdata
function. Before you can output data, you must queue it in the engine with
the putdata function.

5 Clean up — When you no longer need the device object, you should remove
it from memory using the delete function, and remove it from the MATLAB
workspace using the clear command.

The data acquisition session is used in many of the documentation examples
included in this guide. Note that the fourth step is treated differently for digital
I/O objects because they do not store data in the engine. Therefore, only analog
input and analog output objects are discussed in this section.

Overview
Example: The Data Acquisition Session
This example illustrates the basic steps you take during a data acquisition
session using an analog input object. You can run this example by typing
daqdoc3_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq',1);
%AI = analoginput('mcc',1);

2 Add channels — Add two channels to AI.

addchannel(AI,1:2);
%addchannel(AI,0:1); % For NI and MCC

3 Configure property values — Configure the sampling rate to 11.025 kHz
and define a 2 second acquisition.

set(AI,'SampleRate',11025)
set(AI,'SamplesPerTrigger',22050)

4 Acquire data — Start AI and extract all the data from the engine. Before
start is issued, you might want to begin inputting data from a microphone
or a CD player.

start(AI)
data = getdata(AI);

Plot the data and label the figure axes.

plot(data)
xlabel('Samples')
ylabel('Signal (Volts)')

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI
3-3

3 The Data Acquisition Session

3-4
Creating a Device Object
Device objects are the toolbox components you use to access your hardware
device. They provide a gateway to the functionality of your hardware, and allow
you to control the behavior of your data acquisition application. Each device
object is associated with a specific hardware subsystem.

To create a device object, you call M-file functions called object creation
functions (or object constructors). These M-files are implemented using the
object-oriented programming capabilities provided by MATLAB, which are
described in “MATLAB Classes and Objects” in the Help browser. The device
object creation functions are listed below.

Before you can create a device object, the associated hardware driver adaptor
must be registered. Adaptor registration occurs automatically. However, if for
some reason an adaptor is not automatically registered, then you must do so
manually with the daqregister function. Refer to “Registering the Hardware
Driver Adaptor” on page A-18 for more information.

You can find out how to create device objects for a particular vendor and
subsystem with the ObjectConstructorName field of the daqhwinfo function.
For example, to find out how to create an analog input object for an installed
National Instruments board, you supply the appropriate adaptor name to
daqhwinfo.

out = daqhwinfo('nidaq');
out.ObjectConstructorName(:)
ans =
 'analoginput('nidaq',1)'
 'analogoutput('nidaq',1)'
 'digitalio('nidaq',1)'

Table 3-1: Device Object Creation Functions

Function Description

analoginput Create an analog input object.

analogoutput Create an analog output object.

digitalio Create a digital I/O object.

Creating a Device Object
The constructor syntax tells you that you must supply the adaptor name and
the hardware ID to the analoginput function

ai = analoginput('nidaq',1);

The association between device objects and hardware subsystems is shown
below.

Creating an Array of Device Objects
In MATLAB, you can create an array from existing variables by concatenating
those variables together. The same is true for device objects. For example,
suppose you create the analog input object ai and the analog output object ao
for a sound card:

ai = analoginput('winsound');
ao = analogoutput('winsound');

You can now create a device object array consisting of ai and ao using the usual
MATLAB syntax. To create the row array x:

x = [ai ao]

 Index: Subsystem: Name:
 1 Analog Input winsound0-AI
 2 Analog Output winsound0-AO

DIO
subsystem

AI
object

DIO
object

AI
subsystem

Toolbox device objects

Hardware subsystemsAO
subsystem

AO
object
3-5

3 The Data Acquisition Session

3-6
To create the column array y:

y = [ai;ao];

Note that you cannot create a matrix of device objects. For example, you cannot
create the matrix

z = [ai ao;ai ao];
??? Error using ==> analoginput/vertcat
Only a row or column vector of device objects can be created.

Depending on your application, you might want to pass an array of device
objects to a function. For example, using one call to the set function, you can
configure both ai and ao to the same property value.

set(x,'SampleRate',44100)

Refer to Chapter 10, “Function Reference,” to see which functions accept a
device object array as an input argument.

Where Do Device Objects Exist?
When you create a device object, it exists in both the MATLAB workspace and
the data acquisition engine. For example, suppose you create the analog input
object ai for a sound card and then make a copy of ai.

ai = analoginput('winsound');
newai = ai;

The copied device object newai is identical to the original device object ai. You
can verify this by setting a property value for ai and returning the value of the
same property from newai.

set(ai,'SampleRate',22050);
get(newai,'SampleRate')
ans =

22050

Creating a Device Object
As shown below, ai and newai return the same property value because they
both reference the same device object in the data acquisition engine.

If you delete either the original device object or a copy, then the engine device
object is also deleted. In this case, you cannot use any copies of the device object
that remain in the workspace because they are no longer associated with any
hardware. Device objects that are no longer associated with hardware are
called invalid objects. The example below illustrates this situation.

delete(ai);
newai
newai =
Invalid Data Acquisition object.
This object is not associated with any hardware and
should be removed from your workspace using CLEAR.

You should remove invalid device objects from the workspace with the clear
command.

MATLAB

Data Acquisition
Engine ai

copy
ai newai
3-7

3 The Data Acquisition Session

3-8
Adding Channels or Lines
Channels and lines are the basic hardware device elements with which you
acquire or output data.

After you create a device object, you must add channels or lines to it. Channels
are added to analog input and analog output objects, while lines are added to
digital I/O objects. The channels added to a device object constitute a channel
group, while the lines added to a device object constitute a line group.

The functions associated with adding channels or lines to a device object are
listed below.

For example, to add two channels to an analog input object associated with a
sound card, you must supply the appropriate hardware channel identifiers
(IDs) to addchannel.

ai = analoginput('winsound');
addchannel(ai,1:2)

Note You cannot acquire or output data with a device object that does not
contain channels or lines. Similarly, you cannot acquire or output data with
channels or lines that are not contained by a device object.

You can think of a device object as a channel or line container that reflects the
common functionality of a particular device. The common functionality of a
device applies to all channels or lines that it contains. For example, the
sampling rate of an analog input object applies to all channels contained by

Table 3-2: Functions Associated with Adding Channels or Lines

Functions Description

addchannel Add hardware channels to an analog input or analog
output object.

addline Add hardware lines to a digital I/O object.

addmuxchannel Add channels when using a National Instruments
AMUX-64T multiplexer.

Adding Channels or Lines
that object. In contrast, the channels and lines contained by the device object
reflect the functionality of a particular channel or line. For example, you can
configure the input range (gain and polarity) on a per-channel basis.

The relationship between an analog input object and the channels it contains
is shown below.

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

Mapping Hardware Channel IDs to MATLAB Indices
When you add channels to a device object, the resulting channel group consists
of a mapping between hardware channel IDs and MATLAB indices.

Hardware channel IDs are numeric values defined by the hardware vendor
that uniquely identify a channel. For National Instruments and Measurement
Computing hardware, the channel IDs are “zero-based” (begin at zero). For
Agilent Technologies hardware and sound cards, the channel IDs are
“one-based” (begin at one). However, when you reference channels, you use the
MATLAB indices and not the hardware IDs. Given this, you should keep in
mind that MATLAB is one-based. You can return the vendor’s hardware IDs
with the daqhwinfo function.

Channel 1

Analog Input Object

Channel 2

Channel 3

Channel n

.

.

.

Container (device object)

Channel group (hardware channels)
3-9

3 The Data Acquisition Session

3-1
For example, suppose you create the analog input object ai for a National
Instruments board and you want to add the first three differential channels.

ai = analoginput('nidaq',1);

To return the hardware IDs, supply the device object to daqhwinfo, and
examine the DifferentialIDs field.

out = daqhwinfo(ai)
out.DifferentialIDs
ans =
 0 1 2 3 4 5 6 7

The first three differential channels have IDs 0, 1, and 2, respectively.

addchannel(ai,0:2);

The index assigned to a hardware channel depends on the order in which you
add it to the device object. In the above example, the channels are
automatically assigned the MATLAB indices 1, 2, and 3, respectively. You can
change the hardware channels associated with the MATLAB indices using the
HwChannel property. For example, to swap the order of the second and third
hardware channels,

ai.Channel(2).HwChannel = 2;
ai.Channel(3).HwChannel = 1;
0

Adding Channels or Lines
The original and modified index assignments are shown below.

Note If you are using scanning hardware, then the MATLAB indices define
the scan order; index 1 is sampled first, index 2 is sampled second, and so on.

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

Original index
assignment

Hardware channel ID MATLAB index

1

0 1

2

2 3

Modified index
assignment 1

0 1

2

2 3
3-11

3 The Data Acquisition Session

3-1
Configuring and Returning Properties
You define and evaluate the behavior of your data acquisition application with
device object properties. You define your application behavior by assigning
values to properties with the set function or the dot notation. You evaluate
your application configuration and status by displaying property values with
the get function or the dot notation.

Property Types
Data Acquisition Toolbox properties are divided into two main types:

• Common properties — Common properties apply to every channel or line
contained by a device object.

• Channel/Line properties — Channel/line properties are configured for
individual channels or lines.

The relationship between an analog input object, the channels it contains, and
their properties is shown below.

For digital I/O objects, the diagram would look the same except that lines
would be substituted for channels.

Channel 1

Analog Input Object

Channel 2

Channel 3

Channel n

.

.

.

Common properties apply
to all channels.

Channel properties are set
on a per-channel basis.
2

Configuring and Returning Properties
Common properties and channel/line properties are subdivided into these two
categories:

• Base properties — Base properties apply to all supported hardware
subsystems of a given type, such as analog input. For example, the
SampleRate property is supported for all analog input subsystems regardless
of the vendor.

• Device-specific properties — Device-specific properties apply only to
specific hardware devices. For example, the BitsPerSample property is
supported only for sound cards. Note that base properties can have
device-specific values. For example, the InputType property has a different
set of values for each supported hardware vendor.

The relationship between common properties, channel/line properties, base
properties, and device-specific properties is shown below.

For a complete description of all properties, refer to Chapter 11, “Base Property
Reference,” or Chapter 12, “Device-Specific Property Reference.”

Base
properties

Device-specific
properties

Hardware
channels/lines

Device
object

Base
properties

Device-specific
properties

Common properties

Channel/line
properties
3-13

3 The Data Acquisition Session

3-1
Returning Property Names and Property Values
Once the device object is created, you can use the set function to return all
configurable properties to a variable or to the command line. Additionally, if a
property has a finite set of string values, then set also returns these values.
You can use the get function to return one or more properties and their current
values to a variable or to the command line.

The syntax used to return common and channel/line properties is described
below. The examples are based on the analog input object ai created for a
sound card and containing two channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

Common Properties
To return all configurable common property names and their possible values
for a device object, you must supply the device object to set. For example, all
configurable common properties for ai are shown below. The base properties
are listed first, followed by the device-specific properties.

set(ai)
BufferingConfig

 BufferingMode: [{Auto} | Manual]
 Channel
 ChannelSkew
 ChannelSkewMode: [{None}]
 ClockSource: [{Internal}]
 DataMissedFcn
 InputOverRangeFcn
 InputType: [{AC-Coupled}]
 LogFileName
 LoggingMode: [Disk | {Memory} | Disk&Memory]
 LogToDiskMode: [{Overwrite} | Index]
 ManualTriggerHwOn: [{Start} | Trigger]
 Name
 RuntimeErrorFcn
 SampleRate
 SamplesAcquiredFcn
 SamplesAcquiredFcnCount
 SamplesPerTrigger
4

Configuring and Returning Properties
 StartFcn
 StopFcn
 Tag
 Timeout
 TimerFcn
 TimerPeriod
 TriggerFcn
 TriggerChannel
 TriggerCondition: [{None}]
 TriggerConditionValue
 TriggerDelay
 TriggerDelayUnits: [{Seconds} | Samples]
 TriggerRepeat
 TriggerType: [Manual | {Immediate} | Software]
 UserData

 WINSOUND specific properties:
 BitsPerSample
 StandardSampleRates: [Off | {On}]

To return all common properties and their current values for a device object,
you must supply the device object to get. For example, all common properties
for ai are shown below. The base properties are listed first, followed by the
device-specific properties.

get(ai)
 BufferingConfig = [512 30]
 BufferingMode = Auto
 Channel = [2x1 aichannel]
 ChannelSkew = 0
 ChannelSkewMode = None
 ClockSource = Internal
 DataMissedFcn = @daqcallback
 EventLog = []
 InitialTriggerTime = [0 0 0 0 0 0]
 InputOverRangeFcn =
 InputType = AC-Coupled
 LogFileName = logfile.daq
 Logging = Off
 LoggingMode = Memory
 LogToDiskMode = Overwrite
3-15

3 The Data Acquisition Session

3-1
 ManualTriggerHwOn = Start
 Name = winsound0-AI
 Running = Off
 RuntimeErrorFcn = @daqcallback
 SampleRate = 8000
 SamplesAcquired = 0
 SamplesAcquiredFcn =
 SamplesAcquiredFcnCount = 1024
 SamplesAvailable = 0
 SamplesPerTrigger = 8000
 StartFcn =
 StopFcn =
 Tag =
 Timeout = 1
 TimerFcn =
 TimerPeriod = 0.1
 TriggerFcn =
 TriggerChannel = [1x0 aichannel]
 TriggerCondition = None
 TriggerConditionValue = 0
 TriggerDelay = 0
 TriggerDelayUnits = Seconds
 TriggerRepeat = 0
 TriggersExecuted = 0
 TriggerType = Immediate
 Type = Analog Input
 UserData = []

 WINSOUND specific properties:
 BitsPerSample = 16
 StandardSampleRates = On

To display the current value for one property, you supply the property name to
get.

get(ai,'SampleRate')
ans =
 8000

To display the current values for multiple properties, you include the property
names as elements of a cell array.
6

Configuring and Returning Properties
get(ai,{'StandardSampleRates','Running'})
ans =
 'On' 'Off'

You can also use the dot notation to display a single property value.

ai.TriggerType
ans =
Immediate

Channel and Line Properties
To return all configurable channel (line) property names and their possible
values for a single channel (line) contained by a device object, you must use the
Channel (Line) property. For example, to display the configurable channel
properties for the first channel contained by ai,

set(ai.Channel(1))
 ChannelName
 HwChannel
 InputRange
 SensorRange
 Units
 UnitsRange

All channel properties and their current values for the first channel contained
by ai are shown below.

get(ai.Channel(1))
 ChannelName = Left
 HwChannel = 1
 Index = 1
 InputRange = [-1 1]
 NativeOffset = 1.5259e-005
 NativeScaling = 3.0518e-005
 Parent = [1x1 analoginput]
 SensorRange = [-1 1]
 Type = Channel
 Units = Volts
 UnitsRange = [-1 1]

As described in the preceding section, you can also return values for a specified
number of channel properties with the get function or the dot notation.
3-17

3 The Data Acquisition Session

3-1
Configuring Property Values
You configure property values with the set function or the dot notation. In
practice, you can configure many of the properties at any time while the device
object exists. However, some properties are not configurable while the object is
running. Use the propinfo function, or refer to Chapter 11, “Base Property
Reference,” for information about when a property is configurable.

The syntax used to configure common and channel/line properties is described
below. The examples are based on the analog input object ai created in
“Returning Property Names and Property Values” on page 3-14.

Common Properties
You can configure a single property value using the set function

set(ai,'TriggerType','Manual')

or the dot notation

ai.TriggerType = 'Manual';

To configure values for multiple properties, you can supply multiple property
name/property value pairs to set.

set(ai,'SampleRate',44100,'Name','Test1-winsound')

Note that you can configure only one property value at a time using the dot
notation.

Channel and Line Properties
To configure channel (line) properties for one or more channels (lines)
contained by a device object, you must use the Channel (Line) property. For
example, to configure the SensorRange property for the first channel contained
by ai, you can use the set function

set(ai.Channel(1),'SensorRange',[-2 2])

or the dot notation

ai.Channel(1).SensorRange = [-2 2];
8

Configuring and Returning Properties
To configure values for multiple channel or line properties, you supply multiple
property name/property value pairs to set.

set(ai.Channel(1),'SensorRange',[-2 2],'ChannelName','Chan1')

To configure multiple property values for multiple channels:

chs = ai.Channel(1:2);
set(chs,{'SensorRange','ChannelName'},{[-2 2],'Chan1';[0 4],
'Chan2'});

Specifying Property Names
Device object property names are presented in this guide using mixed case.
While this makes the names easier to read, you can use any case you want
when specifying property names. Additionally, you need use only enough
letters to identify the property name uniquely, so you can abbreviate most
property names. For example, you can configure the SampleRate property any
of these ways.

set(ai,'SampleRate',44100);
set(ai,'samplerate',44100);
set(ai,'sampler',44100);

However, when you include property names in an M-file, you should use the
full property name. This practice can prevent problems with future releases of
the Data Acquisition Toolbox if a shortened name is no longer unique because
of the addition of new properties.

Default Property Values
If you do not explicitly define a value for a property, then the default value is
used. All configurable properties have default values. However, the default
value for a given property might vary based on the hardware you are using.
Additionally, some default values are calculated by the engine and depend on
the values set for other properties. If the hardware driver adaptor specifies a
default value for a property, then that value takes precedence over the value
defined by the toolbox.
3-19

3 The Data Acquisition Session

3-2
If a property has a finite set of string values, then the default value is enclosed
by {} (curly braces). For example, the default value for the LoggingMode
property is Memory.

set(ai,'LoggingMode')
[Disk | {Memory} | Disk&Memory]

You can also use the propinfo function, or refer to Chapter 11, “Base Property
Reference,” or Chapter 12, “Device-Specific Property Reference,” to find the
default value for any property.

The Data Acquisition Property Editor
The Data Acquisition Property Editor is a graphical user interface (GUI) for
accessing device object, channel, and line properties. The GUI is designed so
that you can

• List all existing device objects as well as the channels or lines they contain.

• Configure property values.

• Display property characteristics.

• Display property help.

You open the editor with the daqpropedit function, or via the Workspace
browser by right-clicking a device object and selecting Explore -> Call
Property Editor from the context menu.

For example, create the analog input object ai for a sound card and add both
hardware channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

Open the property editor from the command line.

daqpropedit(ai)
0

Configuring and Returning Properties
The Data Acquisition Property Editor is shown below.

List of device objects, channels,
and lines

List of configurable properties
and their current values

Property characteristics

Property help

Property to configure and its
current value
3-21

3 The Data Acquisition Session

3-2
Acquiring and Outputting Data
After you configure the device object, you can acquire or output data. Acquiring
and outputting data involves these three steps:

1 Starting the device object

2 Logging data or sending data

3 Stopping the device object

As data is being transferred between MATLAB and your hardware, you can
think of the device object as being in a particular state. Two types of states are
defined for the Data Acquisition Toolbox:

• Running — For analog input objects, running means that data is being
acquired from an analog input subsystem. However, the acquired data is not
necessarily saved to memory or a disk file. For analog output objects,
running means that data queued in the engine is ready to be output to an
analog output subsystem.

The running state is indicated by the Running property for both analog input
and analog output objects. Running can be On or Off.

• Logging or Sending — For analog input objects, logging means that data
acquired from an analog input subsystem is being stored in the engine or
saved to a disk file. The logging state is indicated by the Logging property.
Logging can be On or Off.

For analog output objects, sending means the data queued in the engine is
being output to an analog output subsystem. The sending state is indicated
by the Sending property. Sending can be On or Off.

Running, Logging, and Sending are read-only properties that are automatically
set to On or Off by the engine. When Running is Off, Logging and Sending must
be Off. When Running is On, Logging and Sending are set to On only when a
trigger occurs.

Note Digital I/O objects also possess a running state. However, because they
do not store data in the engine, the logging and sending states do not exist.
2

Acquiring and Outputting Data
Starting the Device Object
You start a device object with the start function. For example, to start the
analog input object ai,

ai = analoginput('winsound')
addchannel(ai,1:2)
start(ai)

After start is issued, the Running property is automatically set to On, and both
the device object and hardware device execute according to the configured and
default property values.

While you are acquiring data with an analog input object, you can preview the
data with the peekdata function. peekdata takes a snapshot of the most recent
data but does not remove data from the engine. For example, to preview the
most recent 500 samples acquired by each channel contained by ai,

data = peekdata(ai,500);

Because previewing data is usually a low-priority task, peekdata does not
guarantee that all requested data is returned. You can preview data at any
time while the device object is running.

Logging or Sending Data
While the device object is running, you can

• Log data acquired from an analog input subsystem to the engine (memory)
or to a disk file.

• Output data queued in the engine to an analog output subsystem.

However, before you can log or send data, a trigger must occur. You configure
an analog input or analog output trigger with the TriggerType property. All
the examples presented in this section use the default TriggerType value of
Immediate, which executes the trigger immediately after the start function is
issued. For a detailed description of triggers, refer to “Configuring Analog
Input Triggers” on page 5-19 or “Configuring Analog Output Triggers” on
page 6-20.
3-23

3 The Data Acquisition Session

3-2
Extracting Logged Data
When a trigger occurs for an analog input object, the Logging property is
automatically set to On and data acquired from the hardware is logged to the
engine or a disk file. You extract logged data from the engine with the getdata
function. For example, to extract 500 samples for each channel contained by ai,

data = getdata(ai,500);

getdata blocks the MATLAB command line until all the requested data is
returned to the workspace. You can extract data any time after the trigger
occurs.

Sending Queued Data
For analog output objects, you must queue data in the engine with the putdata
function before it can be output to the hardware. For example, to queue 8000
samples in the engine for each channel contained by the analog output object ao

ao = analogoutput('winsound');
addchannel(ao,1:2);
data = sin(linspace(0,2*pi*500,8000))';
putdata(ao,[data data])

Before the queued data can be output, you must start the analog output object.

start(ao)

When a trigger occurs, the Sending property is automatically set to On and the
queued data is sent to the hardware.

Stopping the Device Object
An analog input (AI) or analog output (AO) object can stop under one of these
conditions:

• You issue the stop function.

• The requested number of samples is acquired (AI) or sent (AO).

• A run-time hardware error occurs.

• A timeout occurs.

When the device object stops, the Running, Logging, and Sending properties
are automatically set to Off. At this point, you can reconfigure the device object
or immediately issue another start command using the current configuration.
4

Cleaning Up
Cleaning Up
When you no longer need a device object, you should clean up the MATLAB
environment by removing the object from memory (the engine) and from the
workspace. These are the steps you take to end a data acquisition session.

You remove device objects from memory with the delete function. For
example, to delete the analog input object ai created in the preceding section:

delete(ai)

A deleted device object is invalid, which means that you cannot connect it to the
hardware. In this case, you should remove the object from the MATLAB
workspace. To remove device objects and other variables from the MATLAB
workspace, use the clear command.

clear ai

If you use clear on a device object that is connected to hardware, the object is
removed from the workspace but remains connected to the hardware. You can
restore cleared device objects to MATLAB with the daqfind function.
3-25

3 The Data Acquisition Session

3-2
6

4

Getting Started with
Analog Input

Analog input (AI) subsystems convert real-world analog signals from a sensor into bits that can be
read by your computer. AI subsystems are typically multichannel devices offering 12 or 16 bits of
resolution. The Data Acquisition Toolbox provides access to analog input devices through an analog
input object.

The purpose of this chapter is to show you how to perform simple analog input tasks using just a few
functions and properties. After reading this chapter, you should be able to use the toolbox to configure
your own analog input session. The sections are as follows.

Creating an Analog Input
Object (p. 4-2)

Create a MATLAB object that represents the analog input subsystem

Adding Channels to an
Analog Input Object (p. 4-3)

Associate hardware channels with the analog input object

Configuring Analog Input
Properties (p. 4-8)

Define the object behavior by assigning values to properties

Acquiring Data (p. 4-12) Execute the object and stream data from the hardware channels to
memory

Analog Input Examples
(p. 4-14)

Examples that show you how to perform a complete data acquisition
task

Evaluating the Analog Input
Object Status (p. 4-21)

Return the values of certain properties in a convenient display format

4 Getting Started with Analog Input

4-2
Creating an Analog Input Object
You create an analog input object with the analoginput function. analoginput
accepts the adaptor name and the hardware device ID as input arguments. For
a list of supported adaptors, refer to “The Hardware Driver Adaptor” on
page 2-8. The device ID refers to the number associated with your board when
it is installed. Some vendors refer to the device ID as the device number or the
board number. The device ID is optional for sound cards with an ID of 0. Use
the daqhwinfo function to determine the available adaptors and device IDs.

Each analog input object is associated with one board and one analog input
subsystem. For example, to create an analog input object associated with a
National Instruments board with device ID 1:

ai = analoginput('nidaq',1);

The analog input object ai now exists in the MATLAB workspace. You can
display the class of ai with the whos command.

whos ai
 Name Size Bytes Class

 ai 1x1 1332 analoginput object

Grand total is 52 elements using 1332 bytes

Once the analog input object is created, the properties listed below are
automatically assigned values. These general purpose properties provide
descriptive information about the object based on its class type and adaptor.

You can display the values of these properties for ai with the get function.

get(ai,{'Name','Type'})
ans =
 'nidaq1-AI' 'Analog Input'

Table 4-1: Descriptive Analog Input Properties

Property Name Description

Name Specify a descriptive name for the device object.

Type Indicate the device object type.

Adding Channels to an Analog Input Object
Adding Channels to an Analog Input Object
After creating the analog input object, you must add hardware channels to it.
As shown by the figure in “Adding Channels or Lines” on page 3-8, you can
think of a device object as a container for channels. The collection of channels
contained by the device object is referred to as a channel group. As described in
“Mapping Hardware Channel IDs to MATLAB Indices” on page 3-9, a channel
group consists of a mapping between hardware channel IDs and MATLAB
indices (see below).

When adding channels to an analog input object, you must follow these rules:

• The channels must reside on the same hardware device. You cannot add
channels from different devices, or from different subsystems on the same
device.

• The channels must be sampled at the same rate.

You add channels to an analog input object with the addchannel function.
addchannel requires the device object and at least one hardware channel ID as
input arguments. You can optionally specify MATLAB indices, descriptive
channel names, and an output argument. For example, to add two hardware
channels to the device object ai created in the preceding section:

chans = addchannel(ai,0:1);

The output argument chans is a channel object that reflects the channel array
contained by ai. You can display the class of chans with the whos command.

whos chans
 Name Size Bytes Class

 chans 2x1 512 aichannel object

Grand total is 7 elements using 512 bytes

You can use chans to easily access channels. For example, you can easily
configure or return property values for one or more channels. As described in
“Referencing Individual Hardware Channels” on page 4-5, you can also access
channels with the Channel property.
4-3

4 Getting Started with Analog Input

4-4
Once you add channels to an analog input object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the channels based on their class type and ID.

You can display the values of these properties for chans with the get function.

get(chans,{'HwChannel','Index','Parent','Type'})
ans =
 [0] [1] [1x1 analoginput] 'Channel'
 [1] [2] [1x1 analoginput] 'Channel'

If you are using scanning hardware, then the MATLAB indices define the scan
order; index 1 is sampled first, index 2 is sampled second, and so on.

Note The number of channels you can add to a device object depends on the
specific board you are using. Some boards support adding channels in any
order and adding the same channel multiple times, while other boards do not.
Additionally, each channel might have its own input range, which is verified
with each acquired sample. The collection of channels you add to a device
object is sometimes referred to as a channel gain list or a channel gain queue.
For scanning hardware, these channels define the scan order.

Table 4-2: Descriptive Analog Input Channel Properties

Property Name Description

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.

Parent Indicate the parent (device object) of a channel.

Type Indicate a channel.

Adding Channels to an Analog Input Object
Referencing Individual Hardware Channels
As described in the preceding section, you can access channels with the
Channel property or with a channel object. To reference individual channels,
you must specify either MATLAB indices or descriptive channel names.

MATLAB Indices
Every hardware channel contained by an analog input object has an associated
MATLAB index that is used to reference the channel. When adding channels
with the addchannel function, index assignments can be made automatically
or manually. In either case, the channel indices start at 1 and increase
monotonically up to the number of channel group members.

For example, the analog input object ai created in the preceding section had
the MATLAB indices 1 and 2 automatically assigned to the hardware channels
0 and 1, respectively. To manually swap the hardware channel order, you
supply the appropriate index to chans and use the HwChannel property.

chans(1).HwChannel = 1;
chans(2).HwChannel = 0;

Alternatively, you can use the Channel property.

ai.Channel(1).HwChannel = 1;
ai.Channel(2).HwChannel = 0;

Note that you can also use addchannel to specify the required channel order.

chans = addchannel(ai,[1 0]);

Descriptive Channel Names
Choosing a unique, descriptive name can be a useful way to identify and
reference channels — particularly for large channel groups. You can associate
descriptive names with hardware channels using the addchannel function. For
example, suppose you want to add 16 single-ended channels to ai, and you
want to associate the name TrigChan with the first channel in the group.

ai.InputType = 'SingleEnded';
addchannel(ai,0,'TrigChan');
addchannel(ai,1:15);
4-5

4 Getting Started with Analog Input

4-6
Alternatively, you can use the ChannelName property.

ai.InputType = 'SingleEnded';
addchannel(ai,0:15);
ai.Channel(1).ChannelName = 'TrigChan';

You can now use the channel name to reference the channel.

ai.TrigChan.InputRange = [-10 10];

Example: Adding Channels for a Sound Card
Suppose you create the analog input object ai for a sound card.

ai = analoginput('winsound');

Most sound cards have just two hardware channels that you can add. If one
channel is added, the sound card is said to be in mono mode. If two channels
are added, the sound card is said to be in stereo mode. However, the rules for
adding these two channels differ from those of other data acquisition devices.
These rules are described below.

Mono Mode
If you add one channel to ai, the sound card is said to be in mono mode and the
channel added must have a hardware ID of 1.

addchannel(ai,1);

At the software level, mono mode means that data is acquired from channel 1.
At the hardware level, you generally cannot determine the actual channel
configuration and data can be acquired from channel 1, channel 2, or both
depending on your sound card. Channel 1 is automatically assigned the
descriptive channel name Mono.

ai.Channel.ChannelName
ans =
Mono

Adding Channels to an Analog Input Object
Stereo Mode
If you add two channels to ai, the sound card is said to be in stereo mode. You
can add two channels using two calls to addchannel provided channel 1 is
added first.

addchannel(ai,1);
addchannel(ai,2);

Alternatively, you can use one call to addchannel provided channel 1 is
specified as the first element of the hardware ID vector.

addchannel(ai,1:2);

Stereo mode means that data is acquired from both hardware channels.
Channel 1 is automatically assigned the descriptive name Left and channel 2
is automatically assigned the descriptive name Right.

ai.Channel.ChannelName
ans =
 'Left'
 'Right'

While in stereo mode, if you want to delete one channel, then that channel must
be channel 2. If you try to delete channel 1, an error is returned.

delete(ai.Channel(2))

The sound card is now in mono mode.
4-7

4 Getting Started with Analog Input

4-8
Configuring Analog Input Properties
After hardware channels are added to the analog input object, you should
configure property values. As described in “Configuring and Returning
Properties” on page 3-12, the Data Acquisition Toolbox supports two basic
types of properties for analog input objects: common properties and channel
properties. Common properties apply to all channels contained by the device
object while channel properties apply to individual channels.

The properties you configure depend on your particular analog input
application. For many common applications, there is a small group of
properties related to the basic setup that you will typically use. These basic
setup properties control the sampling rate, define the trigger type, and define
the samples to be acquired per trigger. Analog input properties related to the
basic setup are given below.

The Sampling Rate
You control the rate at which an analog input subsystem converts analog data
to digital data with the SampleRate property. SampleRate must be specified as
samples per second. For example, to set the sampling rate for each channel of
your National Instruments board to 100,000 samples per second (100 kHz)

ai = analoginput('nidaq',1);
addchannel(ai,0:1);
set(ai,'SampleRate',100000)

Table 4-3: Analog Input Basic Setup Properties

Property Name Description

SampleRate Specify the per-channel rate at which analog data
is converted to digital data.

SamplesPerTrigger Specify the number of samples to acquire for each
channel group member for each trigger that occurs.

TriggerType Specify the type of trigger to execute.

Configuring Analog Input Properties
Data acquisition boards typically have predefined sampling rates that you can
set. If you specify a sampling rate that does not match one of these predefined
values, there are two possibilities:

• If the rate is within the range of valid values, then the engine automatically
selects a valid sampling rate. The rules governing this selection process are
described in the SampleRate reference pages in Chapter 11, “Base Property
Reference.”

• If the rate is outside the range of valid values, then an error is returned.

Note For some sound cards, you can set the sampling rate to any value
between the minimum and maximum values defined by the hardware. You
can enable this feature with the StandardSampleRates property. Refer to
Chapter 12, “Device-Specific Property Reference,” for more information.

For hardware that supports simultaneous sampling of channels (sound cards
and Agilent Technologies devices), the maximum sampling rate for each
channel is given by the maximum board rate. For scanning hardware (most
National Instruments and Measurement Computing devices), the per-channel
sampling rate is given by the maximum hardware rate divided by the number
of channels contained by the device object.

After setting a value for SampleRate, you should find out the actual rate set by
the engine.

ActualRate = get(ai,'SampleRate');

Alternatively, you can use the setverify function, which sets a property value
and returns the actual value set.

ActualRate = setverify(ai,'SampleRate',100000);

You can find the range of valid sampling rates for your hardware with the
propinfo function.

ValidRates = propinfo(ai,'SampleRate');
ValidRates.ConstraintValue
ans =
 1.0e+005 *
 0.0000 2.0000
4-9

4 Getting Started with Analog Input

4-1
Trigger Types
For analog input objects, a trigger is defined as an event that initiates data
logging to memory or to a disk file. Defining an analog input trigger involves
specifying the trigger type with the TriggerType property. The TriggerType
values that are supported for all hardware are given below.

Many devices have additional hardware trigger types, which are available to
you through the TriggerType property. For example, to return all the trigger
types for the analog input object ai created in the preceding section:

set(ai,'TriggerType')
[Manual | {Immediate} | Software | HwDigital]

This information tells you that the National Instruments board also supports
a hardware digital trigger. For a description of device-specific trigger types,
refer to “Device-Specific Hardware Triggers” on page 5-36, or the TriggerType
reference pages in Chapter 11, “Base Property Reference.”

Note Triggering can be a complicated issue and it has many associated
properties. For detailed information about triggering, refer to “Configuring
Analog Input Triggers” on page 5-19.

Table 4-4: Analog Input TriggerType Property Values

TriggerType Value Description

{Immediate} The trigger occurs just after the start function is
issued.

Manual The trigger occurs just after you manually issue the
trigger function.

Software The trigger occurs when the associated trigger
condition is satisfied. Trigger conditions are given
by the TriggerCondition property.
0

Configuring Analog Input Properties
The Samples to Acquire per Trigger
When a trigger executes, a predefined number of samples are acquired for each
channel group member and logged to the engine or a disk file. You specify the
number of samples to acquire per trigger with the SamplesPerTrigger
property.

The default value of SamplesPerTrigger is calculated by the engine such that
1 second of data is collected, and is based on the default value of SampleRate.
In general, to calculate the acquisition time for each trigger, you apply the
formula

acquisition time (seconds) = samples per trigger / sampling rate (in Hz)

For example, to acquire 5 seconds of data per trigger for each channel
contained by ai:

set(ai,'SamplesPerTrigger',500000)

To continually acquire data, you set SamplesPerTrigger to inf.

set(ai,'SamplesPerTrigger',inf)

A continuous acquisition stops only if you issue the stop function, or an error
occurs.
4-11

4 Getting Started with Analog Input

4-1
Acquiring Data
After you configure the analog input object, you can acquire data. Acquiring
data involves these three steps:

1 Starting the analog input object

2 Logging data

3 Stopping the analog input object

Starting the Analog Input Object
You start an analog input object with the start function. For example, to start
the analog input object ai:

ai = analoginput('winsound')
addchannel(ai,1:2)
start(ai)

After start is issued, the Running property is automatically set to On, and both
the device object and hardware device execute according to the configured and
default property values.

While you are acquiring data with an analog input object, you can preview the
data with the peekdata function. peekdata takes a “snapshot” of the most
recent data but does not remove data from the engine. For example, to preview
the most recent 500 samples acquired by each channel contained by ai:

data = peekdata(ai,500);

Because previewing data is usually a low-priority task, peekdata does not
guarantee that all requested data is returned. You can preview data at any
time while the device object is running. However, you cannot use peekdata in
conjunction with hardware triggers because the device is idle until the
hardware trigger is received.
2

Acquiring Data
Logging Data
While the analog input object is running, you can log acquired data to the
engine (memory) or to a disk file. However, before you can log data a trigger
must occur. You configure an analog input trigger with the TriggerType
property. For a detailed description of triggers, refer to “Configuring Analog
Input Triggers” on page 5-19.

When the trigger occurs, the Logging property is automatically set to On and
data acquired from the hardware is logged to the engine or a disk file. You
extract logged data from the engine with the getdata function. For example, to
extract all logged samples for each channel contained by ai:

data = getdata(ai);

getdata blocks the MATLAB command line until all the requested data is
returned to the workspace. You can extract data any time after the trigger
occurs. You can also return sample-time pairs with getdata. For example, to
extract 500 sample-time pairs for each channel contained by ai:

[data,time] = getdata(ai,500);

time is an m-by-1 array containing relative time values for all m samples. Time
is measured relative to the time the first sample is logged, and is measured
continuously until the acquisition stops. getdata is described in more detail in
Chapter 10, “Function Reference.”

You can log data to disk with the LoggingMode property. You can replay data
saved to disk with the daqread function. Refer to “Logging Information to Disk”
on page 8-5 for more information about LoggingMode and daqread.

Stopping the Analog Input Object
An analog input object can stop under one of these conditions:

• You issue the stop function.

• The requested number of samples is acquired.

• A run-time hardware error occurs.

• A timeout occurs.

When the device object stops, the Running and Logging properties are
automatically set to Off. At this point, you can reconfigure the device object or
immediately issue another start command using the current configuration.
4-13

4 Getting Started with Analog Input

4-1
Analog Input Examples
This section illustrates how to perform basic data acquisition tasks using
analog input subsystems and the Data Acquisition Toolbox. For most data
acquisition applications, you must follow these basic steps:

1 Install and connect the components of your data acquisition hardware. At a
minimum, this involves connecting a sensor to a plug-in or external data
acquisition device.

2 Configure your data acquisition session. This involves creating a device
object, adding channels, setting property values, and using specific functions
to acquire data.

3 Analyze the acquired data using MATLAB.

Simple data acquisition applications using a sound card and a National
Instruments board are given below.

Acquiring Data with a Sound Card
Suppose you must verify that the fundamental (lowest) frequency of a tuning
fork is 440 Hz. To perform this task, you will use a microphone and a sound
card to collect sound level data. You will then perform a fast Fourier transform
(FFT) on the acquired data to find the frequency components of the tuning fork.
The setup for this task is shown below.

Sound Card Data SinkSensor

MATLAB
workspace

A/D

Data Source

Figure
4

Analog Input Examples
Configuring the Data Acquisition Session
For this example, you will acquire 1 second of sound level data on one sound
card channel. Because the tuning fork vibrates at a nominal frequency of 440
Hz, you can configure the sound card to its lowest sampling rate of 8000 Hz.
Even at this lowest rate, you should not experience any aliasing effects because
the tuning fork will not have significant spectral content above 4000 Hz, which
is the Nyquist frequency. After you set the tuning fork vibrating and place it
near the microphone, you will trigger the acquisition one time using a manual
trigger.

You can run this example by typing daqdoc4_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');

2 Add channels — Add one channel to AI.

chan = addchannel(AI,1);

3 Configure property values — Assign values to the basic setup properties,
and create the variables blocksize and Fs, which are used for subsequent
analysis. The actual sampling rate is retrieved because it might be set by the
engine to a value that differs from the specified value.

duration = 1; %1 second acquisition
set(AI,'SampleRate',8000)
ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',duration*ActualRate)
set(AI,'TriggerType','Manual')
blocksize = get(AI,'SamplesPerTrigger');
Fs = ActualRate;

4 Acquire data — Start AI, issue a manual trigger, and extract all data from
the engine. Before trigger is issued, you should begin inputting data from
the tuning fork into the sound card.

start(AI)
trigger(AI)
data = getdata(AI);
4-15

4 Getting Started with Analog Input

4-1
5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI

Analyzing the Data
For this example, analysis consists of finding the frequency components of the
tuning fork and plotting the results. To do so, the function daqdocfft was
created. This function calculates the FFT of data, and requires the values of
SampleRate and SamplesPerTrigger as well as data as inputs.

[f,mag] = daqdocfft(data,Fs,blocksize);

daqdocfft outputs the frequency and magnitude of data, which you can then
plot. daqdocfft is shown below.

function [f,mag] = daqdocfft(data,Fs,blocksize)
% [F,MAG]=DAQDOCFFT(X,FS,BLOCKSIZE) calculates the FFT of X
% using sampling frequency FS and the SamplesPerTrigger
% provided in BLOCKSIZE

xfft = abs(fft(data));

% Avoid taking the log of 0.
index = find(xfft == 0);
xfft(index) = 1e-17;

mag = 20*log10(xfft);
mag = mag(1:floor(blocksize/2));
f = (0:length(mag)-1)*Fs/blocksize;
f = f(:);

The results are given below.

plot(f,mag)
grid on
ylabel('Magnitude (dB)')
xlabel('Frequency (Hz)')
6

Analog Input Examples
title('Frequency Components of Tuning Fork')

The plot shows the fundamental frequency around 440 Hz and the first
overtone around 880 Hz. A simple way to find actual fundamental frequency is

[ymax,maxindex]= max(mag);
maxindex
maxindex =
 441

The answer is 441 Hz.

Note The fundamental frequency is not always the frequency component
with the largest amplitude. A more sophisticated approach involves fitting the
observed frequencies to a harmonic series to find the fundamental frequency.

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

20

30

40

50

60

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

daqdoc2_1
Frequency Components of Tuning Fork
4-17

4 Getting Started with Analog Input

4-1
Acquiring Data with a National Instruments Board
Suppose you must verify that the nominal frequency of a sine wave generated
by a function generator is 1.00 kHz. To perform this task, you will input the
function generator signal into a National Instruments board. You will then
perform a fast Fourier transform (FFT) on the acquired data to find the
nominal frequency of the generated sine wave. The setup for this task is shown
below.

Configuring the Data Acquisition Session
For this example, you will acquire 1 second of data on one input channel. The
board is set to a sampling rate of 10 kHz, which is well above the frequency of
interest. After you connect the input signal to the board, you will trigger the
acquisition one time using a manual trigger.

You can run this example by typing daqdoc4_2 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

AI = analoginput('nidaq',1);

2 Add channels — Add one channel to AI.

chan = addchannel(AI,0);

National Instruments Board Data Sink

MATLAB
workspace

A/D

Data Source

Figure
01.00
8

Analog Input Examples
3 Configure property values — Assign values to the basic setup properties,
and create the variables blocksize and Fs, which are used for subsequent
analysis. The actual sampling rate is retrieved because it might be set by the
engine to a value that differs from the specified value.

duration = 1; %1 second acquisition
set(AI,'SampleRate',10000)
ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',duration*ActualRate)
set(AI,'TriggerType','Manual')
blocksize = get(AI,'SamplesPerTrigger');
Fs = ActualRate;

4 Acquire data — Start AI, issue a manual trigger, and extract all data from
the engine. Before trigger is issued, you should begin inputting data from
the function generator into the data acquisition board.

start(AI)
trigger(AI)
data = getdata(AI);

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI

Analyzing the Data
For this experiment, analysis consists of finding the frequency of the input
signal and plotting the results. You can find the signal frequency with
daqdocfft.

[f,mag] = daqdocfft(data,Fs,blocksize);

This function, which is shown in “Analyzing the Data” on page 4-16, calculates
the FFT of data, and requires the values of SampleRate and
SamplesPerTrigger as well as data as inputs. daqdocfft outputs the
frequency and magnitude of data, which you can then plot.
4-19

4 Getting Started with Analog Input

4-2
The results are given below.

plot(f,mag)
grid on
ylabel('Magnitude (dB)')
xlabel('Frequency (Hz)')
title('Frequency Output by Function Generator')

This plot shows the nominal frequency around 1000 Hz. A simple way to find
actual frequency is shown below.

[ymax,maxindex]= max(mag);
maxindex
maxindex =
 994

The answer is 994 Hz.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−60

−40

−20

0

20

40

60

80

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

daqdoc2_2
Frequency Output by Function Generator
0

Evaluating the Analog Input Object Status
Evaluating the Analog Input Object Status
You can evaluate the status of an analog input (AI) object by

• Returning the values of certain properties

• Invoking the display summary

Status Properties
The properties associated with the status of your AI object allow you to
evaluate

• If the device object is running

• If data is being logged to the engine or to a disk file

• How much data has been acquired

• How much data is available to be extracted from the engine

The analog input status properties are given below.

When you issue the start function, Running is automatically set to On. When
the trigger executes, Logging is automatically set to On and SamplesAcquired
keeps a running count of the total number of samples per channel that have
been logged to the engine or a disk file. SamplesAvailable tells you how many
samples per channel are available to be extracted from the engine with the
getdata function.

Table 4-5: Analog Input Status Properties

Property Name Description

Logging Indicate if data is being logged to memory or to a
disk file.

Running Indicate if the device object is running.

SamplesAcquired Indicate the number of samples acquired per
channel.

SamplesAvailable Indicate the number of samples available per
channel in the data acquisition engine.
4-21

4 Getting Started with Analog Input

4-2
When the requested number of samples are acquired, SamplesAcquired
reflects this number, and both Running and Logging are automatically set to
Off. When you extract all the samples from the engine, SamplesAvailable is 0.

The Display Summary
You can invoke the display summary by typing an AI object or a channel object
at the MATLAB command line, or by excluding the semicolon when

• Creating an AI object

• Adding channels

• Configuring property values using the dot notation

You can also display summary information via the Workspace browser by
right-clicking a device object and selecting Explore -> Display Summary from
the context menu.

The displayed information reflects many of the basic setup properties described
in “Configuring Analog Input Properties” on page 4-8, and is designed so you
can quickly evaluate the status of your data acquisition session. The display is
divided into two main sections: general information and channel information.

General Summary Information
The general display summary includes the device object type and the hardware
device name, followed by this information:

• Acquisition parameters

- The sampling rate

- The number of samples to acquire per trigger

- The acquisition duration for each trigger

- The destination for logged data

• Trigger parameters

- The trigger type

- The number of triggers, including the number of triggers already executed

• The engine status

- Whether the engine is logging data, waiting to start, or waiting to trigger

- The number of samples acquired since starting

- The number of samples available to be extracted with getdata
2

Evaluating the Analog Input Object Status
Channel Summary Information
The channel display summary includes property values associated with

• The hardware channel mapping

• The channel name

• The engineering units

The display summary for the example given in “Acquiring Data with a Sound
Card” on page 4-14 before start is issued is shown below.

You can use the Channel property to display only the channel summary
information.

AI.Channel

Display Summary of Analog Input (AI) Object Using 'AudioPCI Record'.

 Acquisition Parameters: 8000 samples per second on each channel.

 8000 samples per trigger on each channel.

 1 sec. of data to be logged per trigger.

 Log data to 'Memory' on trigger.

 Trigger Parameters: 1 'Manual' trigger(s) on TRIGGER.

 Engine status: Waiting for START.

 0 samples acquired since starting.

 0 samples available for GETDATA.

AI object contains channel(s):

Index: ChannelName: HwChannel: InputRange: SensorRange: UnitsRange: Units:

1 'Mono' 1 [-1 1] [-1 1] [-1 1] 'Volts'

General display
summary

Channel display
summary
4-23

4 Getting Started with Analog Input

4-2
4

5

Doing More with Analog
Input

This chapter presents the complete analog input functionality available to you with the Data
Acquisition Toolbox. Properties and functions are described in a way that reflects the typical
procedures you will use to configure an analog input session. The sections are as follows.

Configuring and Sampling
Input Channels (p. 5-2)

Configure hardware characteristics related to the input channel type,
the sampling rate, and the channel skew

Managing Acquired Data
(p. 5-8)

Preview data and extract data from memory

Configuring Analog Input
Triggers (p. 5-19)

Initiate the logging of acquired data to memory or to a disk file

Events and Callbacks
(p. 5-45)

Enhance your analog input session using events and callbacks

Linearly Scaling the Data:
Engineering Units (p. 5-55)

Configure engineering units properties so that extracted data is
linearly scaled

5 Doing More with Analog Input

5-2
Configuring and Sampling Input Channels
The hardware you are using has characteristics that satisfy your specific
application needs. Some of the most important hardware characteristics are
related to configuring

• The input channel type

• The sampling rate

• The channel skew (scanning hardware only)

Properties associated with configuring and sampling input channels are given
below.

Table 5-1: Analog Input Properties Related to Sampling Channels

Property Name Description

ChannelSkew Specify the time between consecutive scanned
hardware channels.

ChannelSkewMode Specify how the channel skew is determined.

InputType Specify the analog input hardware channel
configuration.

SampleRate Specify the per-channel rate at which analog data is
converted to digital data.

Configuring and Sampling Input Channels
Input Channel Configuration
You can configure your hardware input channels with the InputType property.
The device-specific values for this property are given below.

The InputType value determines the number of hardware channels you can
add to a device object. You can return the channel IDs with the daqhwinfo
function. For example, suppose you create the analog input object ai for a
National Instruments board. To display the differential channel IDs:

ai = analoginput('nidaq',1);
hwinfo = daqhwinfo(ai);
hwinfo.DifferentialIDs
ans =
 0 1 2 3 4 5 6 7

In contrast, the single-ended channel IDs would be numbered 0 through 15.

Note If you change the InputType value to decreases the number of channels
contained by the analog input object, the system returns a warning and
deletes all channels.

Table 5-2: InputType Property Values

Vendor InputType Value

Advantech Differential|{SingleEnded}

Agilent Technologies Differential

Keithley Differential|{SingleEnded}

Measurement Computing {Differential}|SingleEnded

National Instruments {Differential}|SingleEnded|
NonReferencedSingleEnded

Sound Cards AC-Coupled
5-3

5 Doing More with Analog Input

5-4
Advantech, Keithley, and Measurement Computing Devices
For Advantech, Keithley, and Measurement Computing devices, InputType
can be Differential or SingleEnded. Channels configured for differential
input are not connected to a fixed reference such as earth, and the input signals
are measured as the difference between two terminals. Channels configured for
single-ended input are connected to a common ground, and input signals are
measured with respect to this ground.

Agilent Technologies Devices
For Agilent Technologies devices, the only valid InputType value is
Differential. Channels configured for differential input are not connected to
a fixed reference such as earth, and the input signals are measured as the
difference between two terminals.

National Instruments Devices
For National Instruments devices, InputType can be Differential,
SingleEnded, or NonReferencedSingleEnded. Channels configured for
differential input are not connected to a fixed reference such as earth, and
input signals are measured as the difference between two terminals. Channels
configured for single-ended input are connected to a common ground, and input
signals are measured with respect to this ground. Channels configured for
nonreferenced single-ended input are connected to their own ground reference,
and input signals are measured with respect to this reference. The ground
reference is tied to the negative input of the instrumentation amplifier.

The number of channels that you can add to a device object depends on the
InputType property value. Most National Instruments boards have 16 or 64
single-ended inputs and 8 or 32 differential inputs, which are interleaved in
banks of 8. This means that for a 64 channel board with single-ended inputs,
you can add all 64 channels. However, if the channels are configured for
differential input, you can only add channels 0-7, 16-23, 32-39, and 48-55.

Sound Cards
For sound cards, the only valid InputType value is AC-Coupled. When input
channels are AC-coupled, they are connected so that constant (DC) signal
levels are suppressed, and only nonzero AC signals are measured.

Configuring and Sampling Input Channels
Sampling Rate
The sampling rate is defined as the per-channel rate (in samples/second) that
an analog input subsystem converts analog data to digital data. You specify the
sampling rate with the SampleRate property.

The maximum rate at which channels are sampled depends on the type of
hardware you are using. If you are using simultaneous sample and hold (SS/H)
hardware such as a sound card, then the maximum sampling rate for each
channel is given by the maximum board rate. For example, suppose you create
the analog input object ai for a sound card and configure it for stereo operation.
If the device has a maximum rate of 48.0 kHz, then the maximum sampling
rate per channel is 48.0 kHz.

ai = analoginput('winsound');
addchannel(ai,1:2);
set(ai,'SampleRate',48000)

If you are using scanning hardware such as a National Instruments board,
then the maximum sampling rate your hardware is rated at typically applies
for one channel. Therefore, the maximum sampling rate per channel is given
by the formula

For example, suppose you create the analog input object ai for a National
Instruments board and add 10 channels to it. If the device has a maximum rate
of 100 kHz, then the maximum sampling rate per channel is 10 kHz.

ai = analoginput('nidaq',1);
set(ai,'InputType','SingleEnded')
addchannel(ai,0:9);
set(ai,'SampleRate',10000)

Typically, you can achieve this maximum rate only under ideal conditions. In
practice, the sampling rate depends on several characteristics of the analog
input subsystem including the settling time, the gain, and the channel skew.
Channel skew is discussed in the next section.

Maximum sampling rate per channel Maximum board rate
Number of channels scanned
--=
5-5

5 Doing More with Analog Input

5-6
Note Whenever the SampleRate value is changed, the BufferingConfig
property value is recalculated by the engine if the BufferingMode property is
set to Auto. Because BufferingConfig indicates the memory used by the
engine, you should monitor this property closely.

Channel Skew
Many data acquisition devices have one A/D converter that is multiplexed to all
input channels. If you sample multiple input channels from scanning
hardware, then each channel is sampled sequentially following this procedure:

1 A single input channel is sampled.

2 The analog signal is converted to a digital value.

3 The process is repeated for every input channel being used.

Because these channels cannot be sampled simultaneously, a time gap exists
between consecutively sampled channels. This time gap is called the channel
skew. The channel skew and the sample period are illustrated below.

...

Group
scan 1

C
h

an
n

el
s

Time

Sample period

Group
scan 2

Group
scan n

Channel skew

Configuring and Sampling Input Channels
As shown in the preceding figure, a scan occurs when all channels in a group
are sampled once and the scan rate is defined as the rate at which every
channel in the group is sampled. The properties associated with configuring
the channel skew are given below.

ChannelSkew and ChannelSkewMode are configurable only for scanning
hardware and not for simultaneous sample and hold (SS/H) hardware. For
SS/H hardware, ChannelSkewMode can only be None, and ChannelSkew can only
be 0. The values for ChannelSkewMode are given below.

If ChannelSkewMode is Minimum or Equisample, then ChannelSkew indicates the
appropriate read-only value. If ChannelSkewMode is set to Manual, you must
specify the channel skew with ChannelSkew.

Table 5-3: Channel Skew Properties

Property Name Description

ChannelSkew Specify the time between consecutive scanned
hardware channels.

ChannelSkewMode Specify how the channel skew is determined.

Table 5-4: ChannelSkewMode Property Values

ChannelSkewMode
Value

Description

None No channel skew is defined. This is the only valid
value for simultaneous sample and hold (SS/H)
hardware.

Equisample The channel skew is automatically calculated as
[(sampling rate)(number of channels)]-1.

Manual The channel skew must be set with the
ChannelSkew property.

Minimum The channel skew is given by the smallest value
supported by the hardware.
5-7

5 Doing More with Analog Input

5-8
Managing Acquired Data
At the core of any analog input application lies the data you acquire from a
sensor and input into your computer for subsequent analysis. The role of the
analog input subsystem is to convert analog data to digitized data that can be
read by the computer. There are two ways to manage acquired data:

• Preview the data with the peekdata function.

• Extract the data from the engine with the getdata function.

After data is extracted from the engine, you can analyze it, save it to disk, etc.
In addition to these two functions, there are several properties associated with
managing acquired data. These properties are listed below.

Previewing Data
Before you extract and analyze acquired data, you might want to examine
(preview) the data as it is being acquired. Previewing the data allows you to
determine if the hardware is performing as expected and if your acquisition
process is configured correctly. Once you are convinced that your system is in
order, you might still want to monitor the data even as it is being analyzed or
saved to disk.

Previewing data is managed with the peekdata function. For example, to
preview the most recent 1000 samples acquired for the analog input object ai:

data = peekdata(ai,1000);

Table 5-5: Analog Input Data Management Properties

Property Name Description

SamplesAcquired Indicate the number of samples acquired per
channel.

SamplesAvailable Indicate the number of samples available per
channel in the data acquisition engine.

SamplesPerTrigger Specify the number of samples to acquire for each
channel group member for each trigger that occurs.

Managing Acquired Data
After start is issued, you can call peekdata. peekdata is a nonblocking
function because it immediately returns control to MATLAB. Therefore,
samples might be missed or repeated.

When a peekdata call is processed, the most recent samples requested are
immediately returned, but the data is not extracted from the engine. In other
words, peekdata provides a “snapshot” of the most recent requested samples.
This situation is illustrated below.

If another peekdata call is issued, then once again, only the most recent
requested samples are returned. This situation is illustrated below.

...

Take a snapshot of the most
recent requested data

Data stored in engine

Time

Take another snapshot of the
most recent requested data

...

Data stored in engine

Time
5-9

5 Doing More with Analog Input

5-1
Rules for Using peekdata
Using peekdata to preview data follows these rules:

• You can call peekdata before a trigger executes. Therefore, peekdata is
useful for previewing data before it is logged to the engine or a disk file.

• In most cases, you will call peekdata while the device object is running.
However, you can call peekdata once after the device object stops running.

• If the specified number of preview samples is greater than the number of
samples currently acquired, all available samples are returned with a
warning message stating that the requested number of samples were not
available.

For more information about peekdata, refer to its reference pages in Chapter
10, “Function Reference.”

Example: Polling the Data Block
Under certain circumstances, you might want to poll the data block. Polling the
data block is useful when calling peekdata because this function does not block
execution control. For example, you can issue peekdata calls based on the
number of samples acquired by polling the SamplesAcquired property.

You can run this example by typing daqdoc5_1 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The available adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq',1);
%AI = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

addchannel(AI,1);
%addchannel(AI,0); % For NI and MCC

3 Configure property values — Define a 10 second acquisition, set up a plot,
and store the plot handle and title handle in the variables P and T,
respectively.

duration = 10; % Ten second acquisition
ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',duration*ActualRate)
0

Managing Acquired Data
figure
set(gcf,'doublebuffer','on') %Reduce plot flicker
P = plot(zeros(1000,1));
T = title([sprintf('Peekdata calls: '), num2str(0)]);
xlabel('Samples'), axis([0 1000 -1 1]), grid on

4 Acquire data — Start AI and update the display for each 1000 samples
acquired by polling SamplesAcquired. The drawnow command forces
MATLAB to update the plot. Because peekdata is used, all acquired data
might not be displayed.

start(AI)
i = 1;
while AI.SamplesAcquired < AI.SamplesPerTrigger

while AI.SamplesAcquired < 1000*i
end
data = peekdata(AI,1000);
set(P,'ydata',data);
set(T,'String',[sprintf('Peekdata calls: '),num2str(i)]);
drawnow
i = i + 1;

end

Make sure AI has stopped running before cleaning up the workspace.

waittilstop(AI,2)

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI

As you run this example, you might not preview all 80,000 samples stored in
the engine. This is because the engine might store data faster than it can be
displayed, and peekdata does not guarantee that all requested samples are
processed.
5-11

5 Doing More with Analog Input

5-1
Extracting Data from the Engine
Many data acquisition applications require that data is acquired at a fixed
(often high) rate, and that the data is processed in some way immediately after
it is collected. For example, you might want to perform an FFT on the acquired
data and then save it to disk. When processing data, you must extract it from
the engine. If acquired data is not extracted in a timely fashion, it can be
overwritten.

Data is extracted from the engine with the getdata function. For example, to
extract 1000 samples for the analog input object ai:

data = getdata(ai,1000);

In addition to returning acquired data, getdata can return relative time,
absolute time, and event information. As shown below, data is an m-by-n array
containing acquired data where m is the number of samples and n is the
number of channels.

getdata is considered a blocking function because it returns control to
MATLAB only when the requested data is available. Therefore, samples are
not missed or repeated. When a trigger executes, acquired data fills the engine.
When a getdata call is processed, the requested samples are returned when
the data is available, and then extracted from the engine.

d11

d21

d31

.

.

.

dm1

d12

d22

d32

.

.

.

dm2

...

d1n

d2n

d3n

.

.

.

dmn

Extracted data. Each column
represents a separate input channel.
2

Managing Acquired Data
As shown below, if a fraction of the data stored in the engine is extracted, then
getdata always extracts the oldest data.

If another getdata call is issued, then once again, the oldest samples are
extracted.

...

Extract the requested data

Data stored in engine

Time

...

Extract the requested data

Data stored in engine

Data extracted from the engine

Time
5-13

5 Doing More with Analog Input

5-1
Rules for Using getdata
Using getdata to extract data stored in the engine follows these rules:

• If the requested number of samples is greater than the samples to be
acquired, then an error is returned.

• If the requested data is not returned in the expected amount of time, an error
is returned. The expected time to return data is given by the time it takes the
engine to fill one data block plus the time specified by the Timeout property.

• You can issue ^C (Control+C) while getdata is blocking. This will not stop
the acquisition but will return control to MATLAB.

• The SamplesAcquired property keeps a running count of the total number of
samples per channel that have been acquired.

• The SamplesAvailable property tells you how many samples you can extract
from the engine per channel.

• MATLAB supports math operations only for the double data type. Therefore,
if you extract data using the native data type of your hardware (typically
int16), you must convert the data to doubles before performing math
operations.

For more information about getdata, refer to its reference pages in Chapter 10,
“Function Reference.”

Example: Previewing and Extracting Data
Suppose you have a data acquisition application that is particularly time
consuming. By previewing the data, you can ascertain whether the acquisition
is proceeding as expected without acquiring all the data. If it is not, then you
can abort the session and diagnose the problem. This example illustrates how
you might use peekdata and getdata together in such an application.

You can run this example by typing daqdoc5_2 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq',1);
%AI = analoginput('mcc',1);
4

Managing Acquired Data
2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
%chan = addchannel(AI,0); % For NI and MCC

3 Configure property values — Define a 10-second acquisition, set up the
plot, and store the plot handle in the variable P. The amount of data to
display is given by preview.

duration = 10; % Ten second acquisition
set(AI,'SampleRate',8000)
ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',duration*ActualRate)
preview = duration*ActualRate/100;
subplot(211)
set(gcf,'doublebuffer','on')
P = plot(zeros(preview,1)); grid on
title('Preview Data')
xlabel('Samples')
ylabel('Signal Level (Volts)')

4 Acquire data — Start AI and update the display using peekdata every time
an amount of data specified by preview is stored in the engine by polling
SamplesAcquired. The drawnow command forces MATLAB to update the
plot. After all data is acquired, it is extracted from the engine. Note that
whenever peekdata is used, all acquired data might not be displayed.

start(AI)
while AI.SamplesAcquired < preview
end
while AI.SamplesAcquired < duration*ActualRate
 data = peekdata(AI,preview);

set(P,'ydata',data)
 drawnow
end

Extract all the acquired data from the engine, and plot the data.

data = getdata(AI);
subplot(212), plot(data), grid on
title('All Acquired Data')
xlabel('Samples')
ylabel('Signal level (volts)')
5-15

5 Doing More with Analog Input

5-1
5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI

The data is shown below.

0 100 200 300 400 500 600 700 800
−0.3

−0.2

−0.1

0

0.1

0.2

daqdoc5_2
Preview Data

Samples

S
ig

na
l L

ev
el

 (
V

ol
ts

)

0 1 2 3 4 5 6 7 8

x 10
4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
All Acquired Data

Samples

S
ig

na
l l

ev
el

 (
vo

lts
)

6

Managing Acquired Data
Returning Time Information
You can return relative time and absolute time information with the getdata
function. Relative time is associated with the extracted data. Absolute time is
associated with the first trigger executed.

Relative Time
To return data and relative time information for the analog input object ai:

[data,time] = getdata(ai);

time is an m-by-1 array of relative time values where m is the number of
samples returned. time = 0 corresponds to the first sample logged by the data
acquisition engine, and time is measured continuously until the acquisition is
stopped.

The relationship between the samples acquired and the relative time for each
sample is shown below for m samples and n channels.

d11

d21

d31

.

.

.

dm1

d12

d22

d32

.

.

.

dm2

...

d1n

d2n

d3n

.

.

.

dmn

t1

t2

t3

.

.

.

tm

Data array. Each column
represents one channel

Relative time array
5-17

5 Doing More with Analog Input

5-1
Absolute Time
To return data, relative time information, and the absolute time of the first
trigger for the analog input object ai:

[data,time,abstime] = getdata(ai);

The absolute time is returned using the MATLAB clock format.

[year month day hour minute seconds]

The absolute time from the getdata call is

abstime
abstime =
1.0e+003 *
 1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

To convert the clock vector to a more convenient form:

t = fix(abstime);
sprintf('%d:%d:%d',t(4),t(5),t(6))
ans =
13:26:20

The absolute time of the first trigger is also recorded by the
InitialTriggerTime property.

Note that absolute times are recorded by the EventLog property for each trigger
executed. You can always find the absolute time associated with a data sample
by adding its relative time to the absolute time of the associated trigger. Refer
to “Recording and Retrieving Event Information” on page 5-48 for more
information about returning absolute time information with the EventLog
property.
8

Configuring Analog Input Triggers
Configuring Analog Input Triggers
An analog input trigger is defined as an event that initiates data logging. You
can log data to the engine (memory) and to a disk file. As shown in the figure
below, when a trigger occurs, the Logging property is automatically set On and
data is stored in the specified target.

When defining a trigger, you must specify the trigger type. Additionally, you
might need to specify one or more of these parameters:

• A trigger condition and trigger condition value

• The number of times to repeat the trigger

• A trigger delay

• A callback function to execute when the trigger event occurs

Properties associated with analog input triggers are given below.

Table 5-6: Analog Input Trigger Properties

Property Name Description

InitialTriggerTime Indicate the absolute time of the first trigger.

ManualTriggerHwOn Specify that the hardware device starts when a
manual trigger is issued.

TriggerFcn Specify the M-file callback function to execute
when a trigger occurs.

Time
Trigger occurs

Logging = OnLogging = Off

Log data to engine
and disk file
5-19

5 Doing More with Analog Input

5-2
Except for TriggerFcn, these trigger-related properties are discussed in the
following sections. TriggerFcn is discussed in “Events and Callbacks” on
page 5-45.

Defining a Trigger: Trigger Types and Conditions
Defining a trigger for an analog input object involves specifying the trigger type
with the TriggerType property. You can think of the trigger type as the source
of the trigger. For some trigger types, you might need to specify a trigger
condition and a trigger condition value. Trigger conditions are specified with
the TriggerCondition property, while trigger condition values are specified
with the TriggerConditionValue property.

TriggerChannel Specify the channel serving as the trigger source.

TriggerCondition Specify the condition that must be satisfied before
a trigger executes.

TriggerCondition
Value

Specify one or more voltage values that must be
satisfied before a trigger executes.

TriggerDelay Specify the delay value for data logging.

TriggerDelayUnits Specify the units in which trigger delay data is
measured.

TriggerRepeat Specify the number of additional times the trigger
executes.

TriggersExecuted Indicate the number of triggers that execute.

TriggerType Specify the type of trigger to execute.

Table 5-6: Analog Input Trigger Properties (Continued)

Property Name Description
0

Configuring Analog Input Triggers
The analog input TriggerType and TriggerCondition values are given below.

For some devices, additional trigger types and trigger conditions are available.
Refer to the TriggerType and TriggerCondition reference pages in Chapter
11, “Base Property Reference,” for these device-specific values.

Trigger types are grouped into two main categories:

• Device-independent triggers

• Device-specific hardware triggers

The trigger types shown above are device-independent triggers because they
are available for all supported hardware. For these trigger types, the callback
that initiates the trigger event involves satisfying a trigger condition in the
engine (software trigger type), or issuing a toolbox function (start or trigger).
Conversely, device-specific hardware triggers depend on the specific hardware

Table 5-7: Analog Input TriggerType and TriggerCondition Values

TriggerType
Value

TriggerCondition
Value

Description

{Immediate} None The trigger occurs just after you issue
the start function.

Manual None The trigger occurs just after you
manually issue the trigger function.

Software {Rising} The trigger occurs when the signal has
a positive slope when passing through
the specified value.

Falling The trigger occurs when the signal has
a negative slope when passing through
the specified value.

Leaving The trigger occurs when the signal
leaves the specified range of values.

Entering The trigger occurs when the signal
enters the specified range of values.
5-21

5 Doing More with Analog Input

5-2
device you are using. For these trigger types, the callback that initiates the
trigger event involves an external analog or digital signal.

Device-specific hardware triggers for National Instruments, Measurement
Computing, and Agilent Technologies devices are discussed in “Device-Specific
Hardware Triggers” on page 5-36. Device-independent triggers are discussed
below.

Immediate Trigger. If TriggerType is Immediate (the default value), the trigger
occurs immediately after the start function is issued. You can configure an
analog input object for continuous acquisition by use an immediate trigger and
setting SamplesPerTrigger or TriggerRepeat to inf. Trigger repeats are
discussed in “Repeating Triggers” on page 5-29.

Manual Trigger. If TriggerType is Manual, the trigger occurs just after you issue
the trigger function. A manual trigger might provide you with more control
over the data that is logged. For example, if the acquired data is noisy, you can
preview the data using peekdata, and then manually execute the trigger after
you observe that the signal is well-behaved.

Software Trigger. If TriggerType is Software, the trigger occurs when a signal
satisfying the specified condition is detected on the hardware channel specified
by the TriggerChannel property. The trigger condition is specified as either a
voltage value and slope, or a range of voltage values using the
TriggerCondition and TriggerConditionValue properties.

Example: Voice Activation Using a Software Trigger
This example demonstrates how to configure an acquisition with a sound card
based on voice activation. The sample rate is set to 44.1 kHz and data is logged
when an acquired sample has a value greater than or equal to 0.2 volt and a
rising slope. A portion of the data is then extracted from the engine and plotted.

You can run this example by typing daqdoc5_3 at the MATLAB command line.

1 Create a device object — Create the analog input object AIVoice for a
sound card. The installed adaptors and hardware IDs are found with
daqhwinfo.

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq',1);
%AIVoice = analoginput('mcc',1);
2

Configuring Analog Input Triggers
2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%chan = addchannel(AIVoice,0); % For NI and MCC

3 Configure property values — Define a 2-second acquisition and configure
a software trigger. The source of the trigger is chan, and the trigger executes
when a rising voltage level has a value of at least 0.2 volt.

duration = 2; % two second acquisition
set(AIVoice,'SampleRate',44100)
ActualRate = get(AIVoice,'SampleRate');
set(AIVoice,'SamplesPerTrigger',ActualRate*duration)
set(AIVoice,'TriggerChannel',chan)
set(AIVoice,'TriggerType','Software')
set(AIVoice,'TriggerCondition','Rising')
set(AIVoice,'TriggerConditionValue',0.2)

4 Acquire data — Start AIVoice, acquire the specified number of samples,
and extract the first 1000 samples from the engine as sample-time pairs.
Display the number of samples remaining in the engine.

start(AIVoice)
[data,time] = getdata(AIVoice,1000);
remsamp = num2str(AIVoice.SamplesAvailable);
disp(['Number of samples remaining in engine: ', remsamp])

Plot all extracted data.

plot(time,data)
drawnow
xlabel('Time (sec.)')
ylabel('Signal Level (Volts)')
grid on

Make sure AIVoice has stopped running before cleaning up the workspace.

waittilstop(AIVoice,2)

5 Clean up — When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AIVoice
5-23

5 Doing More with Analog Input

5-2
Note that when using software triggers, you must specify the TriggerType
value before the TriggerCondition value. The output from this example is
shown below.

The first logged sample has a signal level value of at least 0.2 volt, and this
value corresponds to time = 0. Note that after you issue the getdata function,
87,200 samples remain in the engine.

AIVoice.SamplesAvailable
ans =
 87200

0 0.005 0.01 0.015 0.02 0.025
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (sec.)

S
ig

na
l L

ev
el

 (
V

ol
ts

)
daqdoc3_4

Voice Activation
4

Configuring Analog Input Triggers
Executing the Trigger
For an analog input trigger to occur, you must follow these steps:

1 Configure the appropriate trigger properties.

2 Issue the start function.

3 Issue the trigger function if TriggerType value is Manual.

Once the trigger occurs, data logging is initiated. The device object and
hardware device stop executing when the requested samples are acquired, a
run-time error occurs, or you issue the stop function.

Note After a trigger occurs, the number of samples specified by
SamplesPerTrigger is acquired for each channel group member before the
next trigger can occur.

Trigger Delays
Trigger delays allow you to control exactly when data is logged after a trigger
occurs. You can log data either before the trigger or after the trigger. Logging
data before the trigger occurs is called pretriggering, while logging data after a
trigger occurs is called posttriggering.

You configure trigger delays with the TriggerDelay property. Pretriggers are
specified by a negative TriggerDelay value, while posttriggers are specified by
a positive TriggerDelay value. You can delay data logging in time or in
samples using the TriggerDelayUnits property. When TriggerDelayUnits is
set to Samples, data logging is delayed by the specified number of samples.
When the TriggerDelayUnits property is set to Seconds, data logging is
delayed by the specified number of seconds.
5-25

5 Doing More with Analog Input

5-2
Capturing Pretrigger Data
In some circumstances, you might want to capture data before the trigger
occurs. Such data is called pretrigger data. When capturing pretrigger data,
the SamplesPerTrigger property value includes the data captured before and
after the trigger occurs. Capturing pretrigger data is illustrated below.

You can capture pretrigger data for manual triggers and software triggers. If
TriggerType is Manual, and the trigger function is issued before the trigger
delay passes, then a warning is returned and the trigger is ignored (the trigger
event does not occur).

You cannot capture pretrigger data for immediate triggers or device-specific
hardware triggers.

Note Pretrigger data has negative relative time values associated with it.
This is because time = 0 corresponds to the time the trigger event occurs and
data logging is initiated.

Pretrigger samples Trigger samples

SamplesPerTrigger

Data stored in engine

Trigger occurs
6

Configuring Analog Input Triggers
Capturing Posttrigger Data
In some circumstances, you might want to capture data after the trigger occurs.
Such data is called posttrigger data. When capturing posttrigger data, the
SamplesPerTrigger property value and the number of posttrigger samples are
equal. Capturing posttrigger data is illustrated below.

You can capture posttrigger data using any supported trigger type.

Example: Voice Activation and Pretriggers
This example modifies daqdoc5_3 such that 500 pretrigger samples are
acquired. You can run this example by typing daqdoc5_4 at the MATLAB
command line.

1 Create a device object — Create the analog input object AIVoice for a
sound card. The installed adaptors and hardware IDs are found with
daqhwinfo.

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq',1);
%AIVoice = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%chan = addchannel(AIVoice,0); % For NI and MCC

Posttrigger samples

SamplesPerTrigger

Trigger occurs

Data stored in engine
5-27

5 Doing More with Analog Input

5-2
3 Configure property values — Define a 2-second acquisition, and configure
a software trigger. The source of the trigger is chan, and the trigger executes
when a rising voltage level has a value of at least 0.2 volt. Additionally, 500
pretrigger samples are collected.

duration = 2; % two second acquisition
set(AIVoice,'SampleRate',44100)
ActualRate = get(AIVoice,'SampleRate');
set(AIVoice,'SamplesPerTrigger',ActualRate*duration)
set(AIVoice,'TriggerChannel',chan)
set(AIVoice,'TriggerType','Software')
set(AIVoice,'TriggerCondition','Rising')
set(AIVoice,'TriggerConditionValue',0.2)
set(AIVoice,'TriggerDelayUnits','Samples')
set(AIVoice,'TriggerDelay',-500)

4 Acquire data — Start AIVoice, acquire the specified number of samples,
and extract the first 1000 samples from the engine as sample-time pairs.

start(AIVoice)
[data,time] = getdata(AIVoice,1000);

Plot all the extracted data.

plot(time,data)
xlabel('Time (sec.)')
ylabel('Signal Level (Volts)')
grid on

Make sure AIVoice has stopped running before cleaning up the workspace.

waittilstop(AIVoice,2)

5 Clean up — When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AIVoice
8

Configuring Analog Input Triggers
The output from this example is shown below. Note that the pretrigger data
constitutes half of the 1000 samples extracted from the engine. Additionally,
pretrigger data has negative time associated with it because time = 0
corresponds to the time the trigger event occurs and data logging is initiated.

Repeating Triggers
You can configure triggers to occur once (one-shot acquisition) or multiple
times. You control trigger repeats with the TriggerRepeat property. If
TriggerRepeat is set to its default value of 0, then the trigger occurs once. If
TriggerRepeat is set to a positive integer value, then the trigger is repeated
the specified number of times. If TriggerRepeat is set to inf, then the trigger
repeats continuously and you can stop the device object only by issuing the
stop function.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (sec.)

S
ig

na
l L

ev
el

 (
V

ol
ts

)
daqdoc3_5

Voice Activation with Pretriggering
5-29

5 Doing More with Analog Input

5-3
Example: Voice Activation and Repeating Triggers
This example modifies daqdoc5_3 such that two triggers are issued. The
specified amount of data is acquired for each trigger and stored in separate
variables. The Timeout value is set to five seconds. Therefore, if getdata does
not return the specified number of samples in the time given by the TimeOut
property plus the time required to acquire the data, the acquisition will be
aborted.

You can run this example by typing daqdoc5_5 at the MATLAB command line.

1 Create a device object — Create the analog input object AIVoice for a
sound card. The installed adaptors and hardware IDs are found with
daqhwinfo.

AIVoice = analoginput('winsound');
%AIVoice = analoginput('nidaq',1);
%AIVoice = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AIVoice.

chan = addchannel(AIVoice,1);
%chan = addchannel(AIVoice,0); % For NI and MCC

3 Configure property values — Define a 1-second total acquisition time and
configure a software trigger. The source of the trigger is chan, and the
trigger executes when a rising voltage level has a value of at least 0.2 volt.
Additionally, the trigger is repeated once when the trigger condition is met.

duration = 0.5; % One-half second acquisition for each trigger
set(AIVoice,'SampleRate',44100)
ActualRate = get(AIVoice,'SampleRate');
set(AIVoice,'Timeout',5)
set(AIVoice,'SamplesPerTrigger',ActualRate*duration)
set(AIVoice,'TriggerChannel',chan)
set(AIVoice,'TriggerType','Software')
set(AIVoice,'TriggerCondition','Rising')
set(AIVoice,'TriggerConditionValue',0.2)
set(AIVoice,'TriggerRepeat',1)
0

Configuring Analog Input Triggers
4 Acquire data — Start AIVoice, acquire the specified number of samples,
extract all the data from the first trigger as sample-time pairs, and extract
all the data from the second trigger as sample-time pairs. Note that you can
extract the data acquired from both triggers with the command
getdata(AIVoice,44100).

start(AIVoice)
[d1,t1] = getdata(AIVoice);
[d2,t2] = getdata(AIVoice);

Plot the data for both triggers.

subplot(211), plot(t1,d1), grid on, hold on
axis([t1(1)-0.05 t1(end)+0.05 -0.8 0.8])
xlabel('Time (sec.)'), ylabel('Signal level (Volts)'),
title('Voice Activation First Trigger')
subplot(212), plot(t2,d2), grid on
axis([t2(1)-0.05 t2(end)+0.05 -0.8 0.8])
xlabel('Time (sec.)'), ylabel('Signal level (Volts)')
title('Voice Activation Second Trigger')

Make sure AIVoice has stopped running before cleaning up the workspace.

waittilstop(AIVoice,2)

5 Clean up — When you no longer need AIVoice, you should remove it from
memory and from the MATLAB workspace.

delete(AIVoice)
clear AIVoice
5-31

5 Doing More with Analog Input

5-3
The data acquired for both triggers is shown below.

As described in “Extracting Data from the Engine” on page 5-12, if you do not
specify the amount of data to extract from the engine with getdata, then the
amount of data returned is given by the SamplesPerTrigger property. You can
return data from multiple triggers with one call to getdata by specifying the
appropriate number of samples. When you return data that spans multiple
triggers, a NaN is inserted in the data stream between trigger events. Therefore,
an extra “sample” (the NaN) is stored in the engine and returned by getdata.
Identifying these NaNs allows you to locate where and when each trigger was
issued in the data stream.

0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec.)

S
ig

na
l l

ev
el

 (
V

ol
ts

)

daqdoc3_6
Voice Activation First Trigger

0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec.)

S
ig

na
l l

ev
el

 (
V

ol
ts

)

Voice Activation Second Trigger
2

Configuring Analog Input Triggers
The figure below illustrates the data stored by the engine during a
multiple-trigger acquisition. The data acquired for each trigger is given by the
SamplesPerTrigger property value. The relative trigger times are shown on
the Time axis where the first trigger time corresponds to t1 (0 seconds by
definition), the second trigger time corresponds to t2, and so on.

The following code modifies daqdoc5_5 so that multiple-trigger data is
extracted from the engine with one call to getdata.

returndata = ActualRate*duration*(AIVoice.TriggerRepeat + 1);
start(AIVoice)
[d,t] = getdata(AIVoice,returndata);

Plot the data.

plot(t,d)
xlabel('Time (sec.)')
ylabel('Signal Level (Volts)')
title('Voice Activation for Both Triggers')
grid on

Time

...Data Data

Trigger 1 Trigger 2 Trigger n

N
a
N

Logging

N
a
N

SamplesPerTrigger

On

Off
tnt2t1



Data stored in engine
5-33

5 Doing More with Analog Input

5-3
The multiple-trigger data is shown below.

You can find the relative trigger times by searching for NaNs in the returned
data. You can find the index location of the NaN in d or t using the isnan
function.

index = find(isnan(d))
index =
 22051

With this information, you can find the relative time for the second trigger.

t2time = t(index+1)
t2time =
 0.5980

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time (sec.)

S
ig

na
l L

ev
el

 (
V

ol
ts

)

Voice Activation for Both Triggers
4

Configuring Analog Input Triggers
How Many Triggers Occurred?
You can find out how many triggers occurred with the TriggersExecuted
property value. The trigger number for each trigger executed is also recorded
by the EventLog property. A convenient way to access event log information is
with the showdaqevents function.

For example, suppose you create the analog input object ai for a sound card
and add one channel to it. ai is configured to acquire 40,000 samples with five
triggers using the default sampling rate of 8000 Hz.

ai = analoginput('winsound');
ch = addchannel(ai,1);
set(ai,'TriggerRepeat',4);
start(ai)

TriggersExecuted returns the number of triggers executed.

ai.TriggersExecuted
ans =
 5

showdaqevents returns information for all the events that occurred while ai
was executing.

showdaqevents(ai)
 1 Start (10:22:04, 0)
 2 Trigger#1 (10:22:04, 0) Channel: N/A
 3 Trigger#2 (10:22:05, 8000) Channel: N/A
 4 Trigger#3 (10:22:06, 16000) Channel: N/A
 5 Trigger#4 (10:22:07, 24000) Channel: N/A
 6 Trigger#5 (10:22:08, 32000) Channel: N/A
 7 Stop (10:22:09, 40000)

For more information about recording and retrieving events, refer to
“Recording and Retrieving Event Information” on page 5-48.
5-35

5 Doing More with Analog Input

5-3
When Did the Trigger Occur?
You can find the absolute time of the first trigger event with the
InitialTriggerTime property value. The absolute time is returned using the
MATLAB clock format.

[year month day hour minute seconds]

For example, the absolute time of the first trigger event for the preceding
example is

abstime = ai.InitialTriggerTime
abstime =
1.0e+003 *
 1.9990 0.0040 0.0170 0.0100 0.0220 0.0041

To convert the clock vector to a more convenient form, you can use the sprintf
function.

t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =
10:22:4

You can also use the showdaqevents function to return the absolute time of
each trigger event. For more information about trigger events, refer to
“Recording and Retrieving Event Information” on page 5-48.

Device-Specific Hardware Triggers
Many data acquisition devices possess the ability to accept a hardware trigger.
Hardware triggers are processed directly by the hardware and can be either a
digital signal or an analog signal. Hardware triggers are often used when speed
is required because a hardware device can process an input signal much faster
than software.

The device-specific hardware triggers are presented to you as additional
property values. Hardware triggers for Agilent Technologies, Measurement
Computing, and National Instruments devices are discussed below and in
Chapter 11, “Base Property Reference.”

Note that the available hardware trigger support depends on the board you are
using. Refer to your hardware documentation for detailed information about its
triggering capabilities.
6

Configuring Analog Input Triggers
Agilent Technologies
When using Agilent Technologies hardware, there are additional trigger types
and trigger conditions available to you. These device-specific property values
fall into two categories: hardware digital triggering and hardware analog
triggering.

The device-specific trigger types and trigger conditions are described below and
in Chapter 11, “Base Property Reference.”

Note that when TriggerType is HwAnalog, the trigger condition values are all
specified as two-element vectors. Setting two trigger levels prevents the
module from triggering repeatedly because of a noisy signal.

Table 5-8: Analog Input TriggerType and TriggerCondition Property Values for Agilent Hardware

TriggerType
Value

TriggerCondition
Value

Description

HwDigital {PositiveEdge} The trigger occurs when the positive (rising) edge of a
digital signal is detected.

NegativeEdge The trigger occurs when the negative (falling) edge of
a digital signal is detected.

HwAnalog {Rising} The trigger occurs when the analog signal has a
positive slope when passing through the specified
range of values.

Falling The trigger occurs when the analog signal has a
negative slope when passing through the specified
range of values.

Leaving The trigger occurs when the analog signal leaves the
specified range of values.

Entering The trigger occurs when the analog signal enters the
specified range of values.
5-37

5 Doing More with Analog Input

5-3
Hardware Digital Triggering. If TriggerType is HwDigital, the trigger is given by
a digital (TTL) signal. For example, to trigger your acquisition when the
negative edge of a digital signal is detected

ai = analoginput('hpe1432',8);
addchannel(ai,1:16);
set(ai,'TriggerType','HwDigital');
set(ai,'TriggerCondition','NegativeEdge');

Hardware Analog Triggering. If TriggerType is HwAnalog, the trigger is given by
an analog signal. For example, to trigger your acquisition when the trigger
signal is between -4 volts and 4 volts

ai = analoginput('hpe1432',8);
addchannel(ai,1:16);
set(ai,'TriggerType','HwAnalog');
set(ai,'TriggerCondition','Entering');
set(ai,'TriggerConditionValue',[-4.0 4.0]);
set(ai,'TriggerChannel',ai.Channel(1:4));
8

Configuring Analog Input Triggers
Measurement Computing
When using Measurement Computing hardware, there are additional trigger
types and trigger conditions available to you. These device-specific property
values fall into two categories: hardware digital triggering and hardware
analog triggering.

The device-specific trigger types and trigger conditions are described below and
in Chapter 11, “Base Property Reference.”

Table 5-9: Analog Input TriggerType and TriggerCondition Values for MCC Hardware

TriggerType
Value

TriggerCondition
Value

Description

HwDigital GateHigh The trigger occurs as long as the digital signal is high.

GateLow The trigger occurs as long as the digital signal is low.

TrigHigh The trigger occurs when the digital signal is high.

TrigLow The trigger occurs when the digital signal is low.

TrigPosEdge The trigger occurs when the positive (rising) edge of
the digital signal is detected.

{TrigNegEdge} The trigger occurs when the negative (falling) edge of
the digital signal is detected.
5-39

5 Doing More with Analog Input

5-4
Hardware Digital Triggering. If TriggerType is HwDigital, the trigger is given by
a digital (TTL) signal. For example, to trigger your acquisition when the
positive edge of a digital signal is detected:

ai = analoginput('mcc',1);
addchannel(ai,0:7);
set(ai,'TriggerType','HwDigital')
set(ai,'TriggerCondition','TrigPosEdge')

HwAnalog {TrigAbove} The trigger occurs when the analog signal makes a
transition from below the specified value to above.

TrigBelow The trigger occurs when the analog signal makes a
transition from above the specified value to below.

GateNegHys The trigger occurs when the analog signal is more
than the specified high value. The acquisition stops if
the analog signal is less than the specified low value.

GatePosHys The trigger occurs when the analog signal is less than
the specified low value. The acquisition stops if the
analog signal is more than the specified high value.

GateAbove The trigger occurs as long as the analog signal is more
than the specified value.

GateBelow The trigger occurs as long as the analog signal is less
than the specified value.

GateInWindow The trigger occurs as long as the analog signal is
within the specified range of values.

GateOutWindow The trigger occurs as long as the analog signal is
outside the specified range of values.

Table 5-9: Analog Input TriggerType and TriggerCondition Values for MCC Hardware (Continued)

TriggerType
Value

TriggerCondition
Value

Description
0

Configuring Analog Input Triggers
The diagram below illustrates how you connect a digital trigger signal to a
PCI-DAS1602/16 board. A/D External Trigger corresponds to pin 45.

Hardware Analog Triggering. If TriggerType is HwAnalog, the trigger is given by
an analog signal. For example, to trigger your acquisition when the trigger
signal is between -4 volts and 4 volts:

ai = analoginput('mcc',1);
addchannel(ai,0:7);
set(ai,'TriggerType','HwAnalog');
set(ai,'TriggerCondition','GateInWindow');
set(ai,'TriggerConditionValue',[-4.0 4.0]);

The diagram below illustrates how you connect an analog trigger signal to a
PCI-DAS1602/16 board. AI Ch 0-7 corresponds to pins 2-17, while Analog
Trigger In corresponds to pin 43.

A/D

A/D External
Trigger

TTL signal

PCI-DAS1602/16 board

A/D Analog Trigger In

Analog trigger

PCI-DAS1602/16 board

AI Ch 0-7

Analog channels
5-41

5 Doing More with Analog Input

5-4
National Instruments
When using National Instruments (NI) hardware, there are additional trigger
types and trigger conditions available to you. These device-specific property
values fall into two categories: hardware digital triggering and hardware
analog triggering.

The device-specific trigger types and trigger conditions are described below and
in Chapter 11, “Base Property Reference.”

Table 5-10: Analog Input TriggerType and TriggerCondition Property Values for NI Hardware

TriggerType
Value

TriggerCondition
Value

Description

HwDigital None The trigger occurs when the falling edge of a digital
(TTL) signal is detected.

HwAnalogChannel
or HwAnalogPin

{AboveHighLevel} The trigger occurs when the analog signal is above
the specified value.

BelowLowLevel The trigger occurs when the analog signal is below
the specified value.

HighHysteresis The trigger occurs when the analog signal is greater
than the specified high value with hysteresis given by
the specified low value.

InsideRegion The trigger occurs when the analog signal is inside
the specified region.

LowHysteresis The trigger occurs when the analog signal is less than
the specified low value with hysteresis given by the
specified high value.
2

Configuring Analog Input Triggers
Hardware Digital Triggering. If TriggerType is HwDigital, the trigger occurs when
the falling edge of a digital (TTL) signal is detected. The following example
illustrates how to configure a hardware digital trigger.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);
set(ai,'TriggerType','HwDigital')

The diagram below illustrates how you connect a digital trigger signal to an
MIO-16E Series board. PFI0/TRIG1 corresponds to pin 11.

Hardware Analog Triggering. If TriggerType is HwAnalogPin, the trigger is given
by a low-range analog signal (typically between -10 and 10 volts) connected to
the appropriate trigger pin. For example, to trigger your acquisition when the
trigger signal is between -4 volts and 4 volts:

ai = analoginput('nidaq',1);
addchannel(ai,0:7);
set(ai,'TriggerType','HwAnalogPin')
set(ai,'TriggerCondition','InsideRegion')
set(ai,'TriggerConditionValue',[-4.0 4.0])

If TriggerType is HwAnalogChannel, the trigger is given by an analog signal
and the trigger channel is the first channel in the channel group (MATLAB
index of one). The valid range of the analog trigger signal is given by the
full-scale range of the trigger channel. The following example illustrates how
to configure such a trigger where the trigger channel is assigned the

A/D
PFI0/TRIG1

TTL signal

MIO-16E Series board
5-43

5 Doing More with Analog Input

5-4
descriptive name TrigChan and the default TriggerCondition property value
is used.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);
set(ai.Channel(1),'ChannelName','TrigChan')
set(ai,'TriggerChannel',ai.Channel(1))
set(ai,'TriggerType','HwAnalogChannel')
set(ai,'TriggerConditionValue',0.2)

The diagram below illustrates how you can connect an analog trigger signal to
an MIO-16E Series board.

A/D
PFI0/TRIG1

Analog pin

MIO-16E Series board
4

Events and Callbacks
Events and Callbacks
You can enhance the power and flexibility of your analog input application by
utilizing events. An event occurs at a particular time after a condition is met
and might result in one or more callbacks.

While the analog input object is running, you can use events to display a
message, display data, analyze data, and so on. Callbacks are controlled
through callback properties and callback functions. All event types have an
associated callback property. Callback functions are M-file functions that you
construct to suit your specific data acquisition needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.
Note that daqcallback is the default value for some callback properties.

Event Types
The analog input event types and associated callback properties are described
below.

Table 5-11: Analog Input Callback Properties

Event Type Property Name

Data missed DataMissedFcn

Input overrange InputOverRangeFcn

Run-time error RuntimeErrorFcn

Samples acquired SamplesAcquiredFcn

SamplesAcquiredFcnCount

Start StartFcn

Stop StopFcn

Timer TimerFcn

TimerPeriod

Trigger TriggerFcn
5-45

5 Doing More with Analog Input

5-4
Data Missed Event. A data missed event is generated immediately after acquired
data is missed. In most cases, data is missed because

• The engine cannot keep up with the rate of acquisition.

• The driver wrote new data into the hardware’s FIFO buffer before the
previously acquired data was read. You can usually avoid this problem by
increasing the size of the memory block with the BufferingConfig property.

This event executes the callback function specified for the DataMissedFcn
property. The default value for DataMissedFcn is daqcallback, which displays
the event type and the device object name. When a data missed event occurs,
the analog input object is automatically stopped.

Input Overrange Event. An input overrange event is generated immediately after
an overrange condition is detected for any channel group member. An
overrange condition occurs when an input signal exceeds the range specified by
the InputRange property.

This event executes the callback function specified for the InputOverRangeFcn
property. Overrange detection is enabled only when a callback function is
specified for InputOverRangeFcn, and the analog input object is running.

Run-time Error Event. A run-time error event is generated immediately after a
run-time error occurs. Additionally, a toolbox error message is automatically
displayed to the MATLAB workspace. If an error occurs that is not explicitly
handled by the toolbox, then the hardware-specific error message is displayed.

This event executes the callback function specified for RuntimeErrorFcn. The
default value for RuntimeErrorFcn is daqcallback, which displays the event
type, the time the event occurred, the device object name, and the error
message.

Run-time errors include hardware errors and timeouts. Run-time errors do not
include configuration errors such as setting an invalid property value.

Samples Acquired Event. A samples acquired event is generated immediately
after a predetermined number of samples is acquired.

This event executes the callback function specified for the
SamplesAcquiredFcn property every time the number of samples specified by
SamplesAcquiredFcnCount is acquired for each channel group member.
6

Events and Callbacks
You should use SamplesAcquiredFcn if you must access each sample that is
acquired. However, if you are performing a CPU-intensive task with the data,
then system performance might be adversely affected. If you do not have this
requirement, you might want to use the TimerFcn property.

Start Event. A start event is generated immediately after the start function is
issued. This event executes the callback function specified for StartFcn. When
the StartFcn M-file has finished executing, Running is automatically set to On
and the device object and hardware device begin executing. The device object
is not started if an error occurs while executing the callback function.

Stop Event. A stop event is generated immediately after the device object and
hardware device stop running. This occurs when

• The stop function is issued.

• The requested number of samples is acquired.

• A run-time error occurs.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after the device object and hardware device stop running, and
the Running property is set to Off.

Timer Event. A timer event is generated whenever the time specified by the
TimerPeriod property passes. This event executes the callback function
specified for TimerFcn. Time is measured relative to when the device object
starts running.

Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. For example, a common application for
timer events is to display data. However, because displaying data is a
CPU-intensive task, some of these events might be dropped. To guarantee that
events are not dropped, use the SamplesAcquiredFcn property.

Trigger Event. A trigger event is generated immediately after a trigger occurs.
This event executes the callback function specified for the TriggerFcn
property. Under most circumstances, the callback function is not guaranteed to
complete execution until sometime after Logging is set to On.
5-47

5 Doing More with Analog Input

5-4
Recording and Retrieving Event Information
While the analog input object is running, certain information is automatically
recorded in the EventLog property for some of the event types listed in the
preceding section. EventLog is a structure that contains two fields: Type and
Data. The Type field contains the event type. The Data field contains
event-specific information. Events are recorded in the order in which they
occur. The first EventLog entry reflects the first event recorded, the second
EventLog entry reflects the second event recorded, and so on.

The event types recorded in EventLog for analog input objects, as well as the
values for the Type and Data fields, are given below.

Table 5-12: Analog Input Event Information Stored in EventLog

Event Type Type Field Value Data Field Value

Data missed DataMissed RelSample

Input overrange OverRange RelSample

Channel

OverRange

Run-time error Error AbsTime

RelSample

String

Start Start AbsTime

RelSample

Stop Stop AbsTime

RelSample

Trigger Trigger AbsTime

RelSample

Channel

Trigger
8

Events and Callbacks
Samples acquired events and timer events are not stored in EventLog.

Note Unless a run-time error occurs, EventLog records a start event, trigger
event, and stop event for each data acquisition session.

The Data field values are described below.

The AbsTime Field. AbsTime is used by the run-time error, start, stop, and trigger
events to indicate the absolute time the event occurred. The absolute time is
returned using the MATLAB clock format.

day-month-year hour:minute:second

The Channel Field. Channel is used by the input overrange event and the trigger
event. For the input overrange event, Channel indicates the index number of
the input channel that experienced an overrange signal. For the trigger event,
Channel indicates the index number for each input channel serving as a trigger
source.

The OverRange Field. OverRange is used by the input overrange event, and can be
On or Off. If OverRange is On, then the input channel experienced an overrange
signal. If OverRange is Off, then the input channel no longer experienced an
overrange signal.

The RelSample Field. RelSample is used by all events stored in EventLog to
indicate the sample number that was acquired when the event occurred.
RelSample is 0 for the start event and for the first trigger event regardless of
the trigger type. RelSample is NaN for any event that occurs before the first
trigger executes.

The String Field. String is used by the run-time error event to store the
descriptive message that is generated when a run-time error occurs. This
message is also displayed at the MATLAB command line.

The Trigger Field. Trigger is used by the trigger event to indicate the trigger
number. For example, if three trigger events occur, then Trigger is 3 for the
third trigger event. The total number of triggers executed is given by the
TriggersExecuted property.
5-49

5 Doing More with Analog Input

5-5
Example: Retrieving Event Information
Suppose you want to examine the events logged for the example given by
“Example: Voice Activation Using a Software Trigger” on page 5-22. You can do
this by accessing the EventLog property.

events = AIVoice.EventLog
events =
3x1 struct array with fields:
 Type
 Data

By examining the contents of the Type field, you can list the events that
occurred while AIVoice was running.

{events.Type}
ans =
 'Start' 'Trigger' 'Stop'

To display information about the trigger event, you must access the Data field,
which stores the absolute time the trigger occurred, the number of samples
acquired when the trigger occurred, the index of the trigger channel, and the
trigger number.

trigdata = events(2).Data
trigdata =
 AbsTime: [1999 4 15 18 12 5.8615]
 RelSample: 0
 Channel: 1
 Trigger: 1

You can display a summary of the event log with the showdaqevents function.
For example, to display a summary of the second event contained by the
structure events:

showdaqevents(events,2)
 2 Trigger#1 (18:12:05, 0) Channel: 1

Alternatively, you can display event summary information via the Workspace
browser by right-clicking the device object and selecting Explore -> Show DAQ
Events from the context menu.
0

Events and Callbacks
Creating and Executing Callback Functions
When using callback functions, you should be aware of these execution rules:

• Callback functions execute in the order in which they are issued.

• All callback functions except those associated with timer events are
guaranteed to execute.

• Callback function execution might be delayed if the callback involves a
CPU-intensive task such as updating a figure.

You specify the callback function to be executed when a specific event type
occurs by including the name of the M-file as the value for the associated
callback property. You can specify the callback function as a function handle or
as a string cell array element. Function handles are described in the MATLAB
function_handle reference pages. Note that if you are executing a local
callback function from within an M-file, then you must specify the callback as
a function handle.

For example, to execute the callback function mycallback for the analog input
object ai every time 1000 samples are acquired

ai.SamplesAcquiredFcnCount = 1000;
ai.SamplesAcquiredFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

ai.SamplesAcquiredFcn = {'mycallback'};

M-file callback functions require at least two input arguments. The first
argument is the device object. The second argument is a variable that captures
the event information given in Table 5-12, Analog Input Event Information
Stored in EventLog, on page 5-48. This event information pertains only to the
event that caused the callback function to execute. The function header for
mycallback is shown below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the
callback function and the parameters as elements of a cell array. For example,
to pass the MATLAB variable time to mycallback:

time = datestr(now,0);
ai.SamplesAcquiredFcnCount = 1000;
ai.SamplesAcquiredFcn = {@mycallback,time};
5-51

5 Doing More with Analog Input

5-5
Alternatively, you can specify mycallback as a string in the cell array.

ai.SamplesAcquiredFcn = {'mycallback',time};

The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, then they must be
included in the function header after the two required arguments.

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Specifying a Toolbox Function as a Callback
In addition to specifying your own callback function, you can specify the start,
stop, or trigger toolbox functions as callbacks. For example, to configure ai to
stop running when an overrange condition occurs:

ai.InputOverRangeFcn = @stop;

Examples: Using Callback Properties and Functions
This section provides examples that show you how to create callback functions
and configure callback properties.

Displaying Event Information with a Callback Function
This example illustrates how callback functions allow you to easily display
event information. The example uses daqcallback to display information for
trigger, run-time error, and stop events. The default SampleRate and
SamplesPerTrigger values are used, which results in a 1-second acquisition for
each trigger executed.

You can run this example by typing daqdoc5_6 at the MATLAB command line.
2

Events and Callbacks
1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq',1);
%AI = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
%chan = addchannel(AI,0); % For NI and MCC

3 Configure property values — Repeat the trigger three times, find the time
for the acquisition to complete, and define daqcallback as the M-file to
execute when a trigger, run-time error, or stop event occurs.

set(AI,'TriggerRepeat',3)
time = (AI.SamplesPerTrig/AI.SampleRate)*(AI.TriggerRepeat+1);
set(AI,'TriggerFcn',@daqcallback)
set(AI,'RuntimeErrorFcn',@daqcallback)
set(AI,'StopFcn',@daqcallback)

4 Acquire data — Start AI and wait for it to stop running. The waittilstop
function blocks the MATLAB command line, and waits for AI to stop
running.

start(AI)
waittilstop(AI,time)

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI

Passing Additional Parameters to a Callback Function
This example illustrates how additional arguments are passed to the callback
function. Timer events are generated every 0.5 second to display data using the
local callback function daqdoc5_7plot (not shown below).

You can run this example by typing daqdoc5_7 at the MATLAB command line.
5-53

5 Doing More with Analog Input

5-5
1 Create a device object — Create the analog input object AI for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AI = analoginput('winsound');
%AI = analoginput('nidaq',1);
%AI = analoginput('mcc',1);

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,1);
%chan = addchannel(AI,0); % For NI and MCC

3 Configure property values — Define a 10-second acquisition and execute
the M-file daqdoc5_7plot every 0.5 seconds. Note that the variables bsize,
P, and T are passed to the callback function.

duration = 10; % Ten second duration
set(AI,'SampleRate',22050)
ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',duration*ActualRate)
set(AI,'TimerPeriod',0.5)
bsize = (AI.SampleRate)*(AI.TimerPeriod);
figure
P = plot(zeros(bsize,1));
T = title(['Number of callback function calls: ', num2str(0)]);
xlabel('Samples'), ylabel('Signal (Volts)')
grid on
set(gcf,'doublebuffer','on')
set(AI,'TimerFcn',{@daqdoc5_7plot,bsize,P,T})

4 Acquire data — Start AI. The drawnow command in daqdoc5_7plot forces
MATLAB to update the display. The waittilstop function blocks the
MATLAB command line, and waits for AI to stop running.

start(AI)
waittilstop(AI,duration)

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI
4

Linearly Scaling the Data: Engineering Units
Linearly Scaling the Data: Engineering Units
The Data Acquisition Toolbox provides you with a way to linearly scale analog
input signals from your sensor. You can associate this scaling with specific
engineering units such as volts or Newtons that you might want to apply to
your data. When specifying engineering units, there are three important
considerations:

• The expected data range produced by your sensor. This range depends on the
physical phenomena you are measuring and the maximum output range of
the sensor.

• The range of your analog input hardware. For many devices, this range is
specified by the gain and polarity. You can return valid input ranges with the
daqhwinfo function.

• The engineering units associated with your acquisition. By default, most
analog input hardware converts data to voltage values. However, after the
data is digitized, you might want to define a linear scaling that represents
specific engineering units when data is returned to MATLAB.

The properties associated with engineering units and linearly scaling acquired
data are given below.

Note If supported by the hardware, you can set the engineering units
properties on a per-channel basis. Therefore, you can configure different
engineering unit conversions for each hardware channel.

Table 5-13: Analog Input Engineering Units Properties

Property Name Description

SensorRange Specify the range of data you expect from your sensor.

InputRange Specify the range of the analog input subsystem.

Units Specify the engineering units label.

UnitsRange Specify the range of data as engineering units.
5-55

5 Doing More with Analog Input

5-5
Linearly scaled acquired data is given by the formula

scaled value = (A/D value)(units range)/(sensor range)

Note The above formula assumes you are using symmetric units range and
sensor range values, and represents the simplest scenario. If your units range
or sensor range values are asymmetric, then you must also include the
appropriate offset in the formula.

The A/D value is constrained by the InputRange property, which reflects the
gain and polarity of your hardware channels, and is usually returned as a
voltage value. You should choose an input range that utilizes the maximum
dynamic range of your A/D subsystem. The best input range is the one that
most closely encompasses the expected sensor range. If the sensor signal is
larger than the input range, then the hardware will usually clip (saturate) the
signal.

The units range is given by the UnitsRange property, while the sensor range is
given by the SensorRange property. SensorRange is specified as a voltage
value, while UnitsRange is specified as an engineering unit such as Newtons or
g’s (1 g = 9.80 m/s/s). These property values control the scaling of data when it
is extracted from the engine with the getdata function. You can find the
appropriate units range and sensor range from your sensor’s specification
sheet.

For example, suppose SensorRange is [-1 1] and UnitsRange is [-10 10]. If
an A/D value is 2.5, then the scaled value is (2.5)(20/2) or 25, in the appropriate
units.

Example: Performing a Linear Conversion
This example illustrates how to configure the engineering units properties for
an analog input object connected to a National Instruments PCI-6024E board.

An accelerometer is connected to a device which is undergoing a vibration test.
Your job is to measure the acceleration and the frequency components of the
device while it is vibrating. The accelerometer has a range of ±50 g’s, a voltage
sensitivity of 99.7 mV/g, and a resolution of 0.00016 g.
6

Linearly Scaling the Data: Engineering Units
The accelerometer signal is input to a Tektronix TDS 210 digital oscilloscope,
and to channel 0 of the data acquisition board. By observing the signal on the
scope, the maximum expected range of data from the sensor is ±200 mV, which
corresponds to approximately ±2 g’s. Given this constraint, you should
configure the board’s input range to ±500 mV, which is the closest input range
that encompasses the expected data range.

You can run this example by typing daqdoc5_8 at the MATLAB command line.

1 Create a device object — Create the analog input object AI for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

AI = analoginput('nidaq',1);

2 Add channels — Add one hardware channel to AI.

chan = addchannel(AI,0);

3 Configure property values — Configure the sampling rate to 200 kHz and
define a two second acquisition.

duration = 2;
ActualRate = setverify(AI,'SampleRate',200000);
set(AI,'SamplesPerTrigger',duration*ActualRate)

Configure the engineering units properties. This example assumes you are
using a National Instruments PCI-6024E board or an equivalent hardware
device. SensorRange is set to the maximum accelerometer range in volts,
and UnitsRange is set to the corresponding range in g’s. InputRange is set to
the value that most closely encompasses the expected data range of ±200
mV.

set(chan,'SensorRange',[-5 5])
set(chan,'InputRange',[-0.5 0.5])
set(chan,'UnitsRange',[-50 50])
set(chan,'Units','g''s (1g = 9.80 m/s/s)')

4 Acquire data — Start the acquisition.

start(AI)
5-57

5 Doing More with Analog Input

5-5
Extract and plot all the acquired data.

data = getdata(AI);
subplot(2,1,1),plot(data)

Calculate and display the frequency information.

Fs = ActualRate;
blocksize = duration*ActualRate;
[f,mag]= daqdocfft(data,Fs,blocksize);
subplot(2,1,2),plot(f,mag)

Make sure AI has stopped running before cleaning up the workspace.

waittilstop(AI,2)

5 Clean up — When you no longer need AI, you should remove it from memory
and from the MATLAB workspace.

delete(AI)
clear AI
8

6

Analog Output

Analog output subsystems convert digital data stored on your computer to a real-world analog signal.
Typical plug-in acquisition boards offer two output channels with 12 bits of resolution, with special
hardware available to support multiple channel analog output operations. The Data Acquisition
Toolbox provides access to analog output subsystems through an analog output object.

The purpose of this chapter is to show you how to perform data acquisition tasks using your analog
output hardware. The sections are as follows.

Getting Started with Analog
Output (p. 6-2)

Perform basic tasks with your analog output hardware

Managing Output Data
(p. 6-16)

Queue data in memory for eventual output to the hardware

Configuring Analog Output
Triggers (p. 6-20)

Initiate the output of queued data to the hardware

Events and Callbacks
(p. 6-26)

Enhance your analog output session using events and callbacks

Linearly Scaling the Data:
Engineering Units (p. 6-34)

Configure engineering units properties so that output data is linearly
scaled

Starting Multiple Device
Objects (p. 6-37)

Simultaneously use your hardware’s analog output and analog input
subsystems

6 Analog Output

6-2
Getting Started with Analog Output
The purpose of this section is to show you how to use the Data Acquisition
Toolbox to perform basic tasks with your analog output (AO) hardware. This is
accomplished by describing the most important properties and functions
required for an analog output data acquisition session. In addition, several
device-specific examples are provided as well as ways to evaluate the status of
the analog output object.

After reading this section, you will be able to perform basic analog output tasks
suited to your own data acquisition applications.

Creating an Analog Output Object
You create an analog output object with the analogoutput function.
analogoutput accepts the adaptor name and the hardware device ID as input
arguments. For a list of supported adaptors, refer to “The Hardware Driver
Adaptor” on page 2-8. The device ID refers to the number associated with your
board when it is installed. Some vendors refer to the device ID as the device
number or the board number. The device ID is optional for sound cards with an
ID of 0. Use the daqhwinfo function to determine the available adaptors and
device IDs.

Each analog output object is associated with one board and one analog output
subsystem. For example, to create an analog output object associated with a
National Instruments board with device ID 1:

ao = analogoutput('nidaq',1);

The analog output object ao now exists in the MATLAB workspace. You can
display the class of ao with the whos command.

whos ao
 Name Size Bytes Class

 ao 1x1 1334 analogoutput object

Grand total is 53 elements using 1334 bytes

Getting Started with Analog Output
Once the analog output object is created, the properties listed below are
automatically assigned values. These general purpose properties provide
descriptive information about the object based on its class type and adaptor.

You can display the values of these properties for ao with the get function.

get(ao,{'Name','Type'})
ans =
 'nidaq1-AO' 'Analog Output'

Adding Channels to an Analog Output Object
After creating the analog output object, you must add hardware channels to it.
As shown by the figure in “Adding Channels or Lines” on page 3-8, you can
think of a device object as a container for channels. The collection of channels
contained by the device object is referred to as a channel group. As described in
“Mapping Hardware Channel IDs to MATLAB Indices” on page 3-9, a channel
group consists of a mapping between hardware channel IDs and MATLAB
indices (see below).

When adding channels to an analog output object, you must follow these rules:

• The channels must reside on the same hardware device. You cannot add
channels from different devices, or from different subsystems on the same
device.

• The channels must be sampled at the same rate.

You add channels to an analog output object with the addchannel function.
addchannel requires the device object and at least one hardware channel ID as
input arguments. You can optionally specify MATLAB indices, descriptive
channel names, and an output argument. For example, to add two hardware
channels to the device object ao created in the preceding section:

chans = addchannel(ao,0:1);

Table 6-1: Descriptive Analog Output Properties

Property Name Description

Name Specify a descriptive name for the device object.

Type Indicate the device object type.
6-3

6 Analog Output

6-4
The output argument chans is a channel object that reflects the channel array
contained by ao. You can display the class of chans with the whos command.

whos chans
 Name Size Bytes Class

 chans 2x1 512 aochannel object

Grand total is 7 elements using 512 bytes

You can use chans to easily access channels. For example, you can easily
configure or return property values for one or more channels. As described in
“Referencing Individual Hardware Channels” on page 4-5, you can also access
channels with the Channel property.

Once you add channels to an analog output object, the properties listed below
are automatically assigned values. These properties provide descriptive
information about the channels based on their class type and ID.

You can display the values of these properties for chans with the get function.

get(chans,{'HwChannel','Index','Parent','Type'})
ans =
 [0] [1] [1x1 analogoutput] 'Channel'
 [1] [2] [1x1 analogoutput] 'Channel'

To reference individual channels, you must specify either MATLAB indices or
descriptive channel names. Refer to “Referencing Individual Hardware
Channels” on page 4-5 for more information.

Table 6-2: Descriptive Analog Output Channel Properties

Property Name Description

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.

Parent Indicate the parent (device object) of a channel.

Type Indicate a channel.

Getting Started with Analog Output
Configuring Analog Output Properties
After hardware channels are added to the analog output object, you should
configure property values. As described in “Configuring and Returning
Properties” on page 3-12, the Data Acquisition Toolbox supports two basic
types of properties for analog output objects: common properties and channel
properties. Common properties apply to all channels contained by the device
object while channel properties apply to individual channels.

The properties you configure depend on your particular analog output
application. For many common applications, there is a small group of
properties related to the basic setup that you will typically use. These basic
setup properties control the sampling rate and define the trigger type. Analog
output properties related to the basic setup are given below.

Setting the Sampling Rate
You control the rate at which an analog output subsystem converts digital data
to analog data is controlled with the SampleRate property. SampleRate must be
specified as samples per second. For example, to set the sampling rate for each
channel of your National Instruments board to 100,000 samples per second
(100 kHz):

ao = analogoutput('nidaq',1);
addchannel(ao,0:1);
set(ao,'SampleRate',100000)

Table 6-3: Analog Output Basic Setup Properties

Property Name Description

SampleRate Specify the per-channel rate at which digital data is
converted to analog data.

TriggerType Specify the type of trigger to execute.
6-5

6 Analog Output

6-6
Data acquisition boards typically have predefined sampling rates that you can
set. If you specify a sampling rate that does not match one of these predefined
values, there are two possibilities:

• If the rate is within the range of valid values, then the engine automatically
selects a valid sampling rate. The rules governing this selection process are
described in the SampleRate reference pages in Chapter 11, “Base Property
Reference.”

• If the rate is outside the range of valid values, then an error is returned.

Note For some sound cards, you can set the sampling rate to any value
between the minimum and maximum values defined by the hardware. You
can enable this feature with the StandardSampleRates property. Refer to
Chapter 12, “Device-Specific Property Reference,” for more information.

Most analog output subsystems allow simultaneous sampling of channels.
Therefore, the maximum sampling rate for each channel is given by the
maximum board rate.

After setting a value for SampleRate, you should find out the actual rate set by
the engine.

ActualRate = get(ao,'SampleRate');

Alternatively, you can use the setverify function, which sets a property value
and returns the actual value set.

ActualRate = setverify(ao,'SampleRate',100000);

You can find the range of valid sampling rates for your hardware with the
propinfo function.

ValidRates = propinfo(ao,'SampleRate');
ValidRates.ConstraintValue
ans =
 1.0e+005 *
 0.0000 2.0000

Getting Started with Analog Output
Defining a Trigger
For analog output objects, a trigger is defined as an event that initiates the
output of data from the engine to the analog output hardware.

Defining a trigger for an analog output object involves specifying the trigger
type. Trigger types are specified with the TriggerType property. The valid
TriggerType values that are supported for all hardware are given below.

Most devices have hardware-specific trigger types, which are available to you
through the TriggerType property. For example, to see all the trigger types
(including hardware-specific trigger types) for the analog output object ao
created in the preceding section:

set(ao,'TriggerType')
[Manual | {Immediate} | HwDigital]

This information tells you that the National Instruments board also supports
a hardware digital trigger. For a description of device-specific trigger types,
refer to “Device-Specific Hardware Triggers” on page 6-24, or the TriggerType
reference pages in Chapter 11, “Base Property Reference.”

Table 6-4: Analog Output TriggerType Property Values

TriggerType Values Description

{Immediate} The trigger occurs just after you issue the start
function.

Manual The trigger occurs just after you manually issue the
trigger function.
6-7

6 Analog Output

6-8
Outputting Data
After you configure the analog output object, you can output data. Outputting
data involves these three steps:

1 Queuing data

2 Starting the analog output object

3 Stopping the analog output object

Queuing Data in the Engine
Before you can start the device object, data must be queued in the engine. Data
is queued in the engine with the putdata function. For example, to queue one
second of data for each channel contained by the analog output object ao:

ao = analogoutput('winsound');
addchannel(ao,1:2);
data = sin(linspace(0,2*pi,8000))';
putdata(ao,[data data])

putdata is a blocking function, and will not return execution control to
MATLAB until the specified data is queued. putdata is described in detail in
“Managing Output Data” on page 6-16 and in Chapter 10, “Function
Reference.”

Starting the Analog Output Object
You start an analog output object with the start function. For example, to
start the analog output object ao:

start(ao)

After start is issued, the Running property is automatically set to On, and both
the device object and hardware device execute according to the configured and
default property values. While the device object is running, you can continue to
queue data.

However, running does not necessarily mean that data is being output from the
engine to the analog output hardware. For that to occur, a trigger must
execute. When the trigger executes, the Sending property is automatically set
to On. Analog output triggers are described on “Defining a Trigger” on page 6-7
and “Configuring Analog Output Triggers” on page 6-20.

Getting Started with Analog Output
Stopping the Analog Output Object
An analog output object can stop under one of these conditions:

• You issue the stop function.

• The queued data is output.

• A run-time hardware error occurs.

• A timeout occurs.

When the device object stops, the Running and Sending properties are
automatically set to Off. At this point, you can reconfigure the device object or
immediately queue more data, and issue another start command using the
current configuration.

Analog Output Examples
This section illustrates how to perform basic data acquisition tasks using
analog output subsystems and the Data Acquisition Toolbox. For most data
acquisition applications using analog output subsystems, you must follow
these basic steps:

1 Install and connect the components of your data acquisition hardware. At a
minimum, this involves connecting an actuator to a plug-in or external data
acquisition device.

2 Configure your data acquisition session. This involves creating a device
object, adding channels, setting property values, and using specific functions
to output data.

Simple data acquisition applications using a sound card and a National
Instruments board are given below.
6-9

6 Analog Output

6-1
Outputting Data with a Sound Card
In this example, sine wave data is generated in MATLAB, output to the D/A
converter on the sound card, and sent to a speaker. The setup is shown below.

You can run this example by typing daqdoc6_1 at the MATLAB command line.

1 Create a device object — Create the analog output object AO for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AO = analogoutput('winsound');

2 Add channels — Add one channel to AO.

chan = addchannel(AO,1);

3 Configure property values — Define an output time of four seconds, assign
values to the basic setup properties, generate data to be queued, and queue
the data with one call to putdata.

duration = 4;
set(AO,'SampleRate',8000)
set(AO,'TriggerType','Manual')
ActualRate = get(AO,'SampleRate');
len = ActualRate*duration;
data = sin(linspace(0,2*pi*500,len))';
putdata(AO,data)

D/A Converter SpeakerData Source

D/A
MATLAB
variable
0

Getting Started with Analog Output
4 Output data — Start AO, issue a manual trigger, and wait for the device
object to stop running.

start(AO)
trigger(AO)
waittilstop(AO,5)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO

Outputting Data with a National Instruments Board
In this example, sine wave data is generated in MATLAB, output to the D/A
converter on a National Instruments board, and displayed with an oscilloscope.
The setup is shown below.

You can run this example by typing daqdoc6_2 at the MATLAB command line.

1 Create a device object — Create the analog output object AO for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

AO = analogoutput('nidaq',1);

2 Add channels — Add one channel to AO.

chan = addchannel(AO,0);

D/A Converter ScopeData Source

D/A
MATLAB
variable
6-11

6 Analog Output

6-1
3 Configure property values — Define an output time of four seconds, assign
values to the basic setup properties, generate data to be queued, and queue
the data with one call to putdata.

duration = 4;
set(AO,'SampleRate',10000)
set(AO,'TriggerType','Manual')
ActualRate = get(AO,'SampleRate');
len = ActualRate*duration;
data = sin(linspace(0,2*pi*500,len))';
putdata(AO,data)

4 Output data — Start AO, issue a manual trigger, and wait for the device
object to stop running.

start(AO)
trigger(AO)
waittilstop(AO,5)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO
2

Getting Started with Analog Output
Evaluating the Analog Output Object Status
You can evaluate the status of an analog output (AO) object by

• Returning the values of certain properties

• Invoking the display summary

Status Properties
The properties associated with the status of your analog output object allow
you to evaluate

• If the device object is running

• If data is being output from the engine

• How much data is queued in the engine

• How much data has been output from the engine

These properties are given below.

When data is queued in the engine, SamplesAvailable is updated to reflect the
total number of samples per channel that was queued. When start is issued,
Running is automatically set to On.

When the trigger executes, Sending is automatically set to On and
SamplesOutput keeps a running count of the total number of samples per
channel output from the engine to the hardware. Additionally,

Table 6-5: Analog Output Status Properties

Property Name Description

Running Indicate if the device object is running.

SamplesAvailable Indicate the number of samples available per
channel in the engine.

SamplesOutput Indicate the number of samples output per channel
from the engine.

Sending Indicate if data is being sent (output) to the
hardware device.
6-13

6 Analog Output

6-1
SamplesAvailable tells you how many samples per channel are still queued in
the engine and ready to be output to the hardware.

When all the queued data is output from the engine, both Running and Sending
are automatically set to Off, SamplesAvailable is 0, and SamplesOutput
reflects the total number of samples per channel that was output.

The Display Summary
You can invoke the display summary by typing an AO object or a channel object
at the MATLAB command line, or by excluding the semicolon when

• Creating an AO object

• Adding channels

• Configuring property values using the dot notation

You can also display summary information via the Workspace browser by
right-clicking a toolbox object and selecting Explore -> Display Summary
from the context menu.

The information displayed reflects many of the basic setup properties described
in “Configuring Analog Output Properties” on page 6-5, and is designed so you
can quickly evaluate the status of your data acquisition session. The display is
divided into two main sections: general summary information and channel
summary information.

General Summary Information
The general display summary includes the device object type and the hardware
device name, followed by this information:

• Output parameters — The sampling rate

• Trigger parameters — The trigger type

• The engine status

- Whether the engine is sending data, waiting to start, or waiting to trigger

- The total time required to output the queued data

- The number of samples queued by putdata

- The number of samples sent to the hardware device
4

Getting Started with Analog Output
Channel Summary Information
The channel display summary includes property values associated with

• The hardware channel mapping

• The channel name

• The engineering units

The display summary shown below is for the example given in “Outputting
Data with a Sound Card” on page 6-10 prior to issuing the start function.

You can use the Channel property to display only the channel summary
information.

AO.Channel

Display Summary of Analog Output (AO) Object Using 'AudioPCI Playback'.

 Output Parameters: 8000 samples per second on each channel.

 Trigger Parameters: 1 'Immediate' trigger on START.

 Engine status: Waiting for START.

 0 total sec. of data currently queued for START

 0 samples currently queued by PUTDATA.

 0 samples sent to output device since START.

AO object contains channel(s):

 Index: ChannelName: HwChannel: OutputRange: UnitsRange: Units:

 1 'Mono' 1 [-1 1] [-1 1] 'Volts

General display
summary

Channel display
summary
6-15

6 Analog Output

6-1
Managing Output Data
At the core of any analog output application lies the data you want to send from
a computer to an output device such as an actuator. The role of the analog
output subsystem is to convert digitized data to analog data for subsequent
output.

Before you can output data to the analog output subsystem, it must be queued
in the engine. Queuing data is managed with the putdata function. In addition
to this function, there are several properties associated with managing output
data. These properties are given below.

Queuing Data with putdata
Before data can be sent to the analog output hardware, you must queue it in
the engine. Queuing data is managed with the putdata function. One column
of data is required for each channel contained by the analog output object. For
example, to queue one second of data for each channel contained by the analog
output object ao:

ao = analogoutput('winsound');
addchannel(ao,1:2);
data = sin(linspace(0,2*pi*500,8000))';
putdata(ao,[data data])

Table 6-6: Analog Output Data Management Properties

Property Name Description

MaxSamplesQueued Indicate the maximum number of samples that can
be queued in the engine.

RepeatOutput Specify the number of additional times queued data
is output.

Timeout Specify an additional waiting time to queue data.
6

Managing Output Data
A data source consisting of m samples and n channels is illustrated below.

Rules for Using putdata
Using putdata to queue data in the engine follows these rules:

• You must queue data in the engine before starting the analog output object.

• If the value of the RepeatOutput property is greater than 0, then all queued
data is automatically requeued until the RepeatOutput value is reached. You
must configure RepeatOutput before start is issued.

• While the analog output object is running, you can continue to queue data
unless RepeatOutput is greater than 0.

• You can queue data in the engine until the value specified by the
MaxSamplesQueued property is reached, or the limitations of your hardware
or computer are reached.

For more information about putdata, refer to its reference pages in Chapter 10,
“Function Reference.”

Rules for Queuing Data
Data to be queued in the engine follows these rules:

• Data is output as soon as a trigger occurs.

• An error is returned if a NaN is included in the data stream.

d11

d21

d31

.

.

.

dm1

d12

d22

d32

.

.

.

dm2

...

d1n

d2n

d3n

.

.

.

dmn

Data source. Each column represents
a separate output channel.
6-17

6 Analog Output

6-1
• You can use the native data type of the hardware. Note that MATLAB
supports math operations only for the double data type. Therefore, to use
math functions on native data, you must convert it to doubles.

• If the data is not within the range of the UnitsRange property, then it is
clipped to the maximum or minimum value specified by UnitsRange. Refer
to “Linearly Scaling the Data: Engineering Units” on page 6-34 for more
information about clipping.

Example: Queuing Data with putdata
This example illustrates how you can use putdata to queue 8000 samples, and
then output the data a total of five times using the RepeatOutput property.

You can run this example by typing daqdoc6_3 at the MATLAB command line.

1 Create a device object — Create the analog output object AO for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AO = analogoutput('winsound');
%AO = analogoutput('nidaq',1);
%AO = analogoutput('mcc',1);

2 Add channels — Add one channel to AO.

chans = addchannel(AO,1);
%chans = addchannel(AO,0); % For NI and MCC

3 Configure property values — Define an output time of one second, assign
values to the basic setup properties, generate data to be queued, and issue
two putdata calls. Because the queued data is repeated four times and two
putdata calls are issued, a total of 10 seconds of data is output.

duration = 1;
set(AO,'SampleRate',8000)
ActualRate = get(AO,'SampleRate');
len = ActualRate*duration;
set(AO,'RepeatOutput',4)
data = sin(linspace(0,2*pi*500,len))';
putdata(AO,data)
putdata(AO,data)
8

Managing Output Data
4 Output data — Start AO and wait for the device object to stop running.

start(AO)
waittilstop(AO,11)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO
6-19

6 Analog Output

6-2
Configuring Analog Output Triggers
An analog output trigger is defined as an event that initiates the output of
data. As shown in the figure below, when a trigger occurs, the Sending property
is automatically set to On and queued data is output from the engine to the
hardware subsystem.

Properties associated with analog output triggers are given below.

Except for TriggerFcn, these trigger-related properties are discussed in the
following sections. TriggerFcn is discussed in “Events and Callbacks” on
page 6-26.

Table 6-7: Analog Output Trigger Properties

Property Name Description

InitialTriggerTime Indicate the absolute time of the first trigger.

TriggerFcn Specify the M-file callback function to execute
when a trigger occurs.

TriggersExecuted Indicate the number of triggers that execute.

TriggerType Specify the type of trigger to execute.

Time
Trigger occurs

Sending = OnSending = Off

Queue data
in engine

Output data
to hardware
0

Configuring Analog Output Triggers
Defining a Trigger: Trigger Types
Defining a trigger for an analog output object involves specifying the trigger
type with the TriggerType property. You can think of the trigger type as the
source of the trigger. The analog output TriggerType values are given below.

Trigger types can be grouped into two main categories:

• Device-independent triggers

• Device-specific hardware triggers

The trigger types shown above are device-independent triggers because they
are available for all supported hardware. For these trigger types, the callback
that initiates the trigger event involves issuing a toolbox function (start or
trigger). Conversely, device-specific hardware triggers depend on the specific
hardware device you are using. For these trigger types, the callback that
initiates the trigger event involves an external digital signal.

Device-specific hardware triggers for National Instruments and Agilent
Technologies devices are discussed in “Device-Specific Hardware Triggers” on
page 6-24. Device-independent triggers are discussed below.

Immediate Trigger. If TriggerType is Immediate (the default value), the trigger
occurs immediately after the start function is issued. You can configure an
analog output object for continuous output, by using an immediate trigger and
setting RepeatOutput to inf.

Manual Trigger. If TriggerType is Manual, the trigger occurs immediately after
the trigger function is issued.

Table 6-8: Analog Output TriggerType Property Values

TriggerType Value Description

{Immediate} The trigger occurs just after you issue the start
function.

Manual The trigger occurs just after you manually issue the
trigger function.
6-21

6 Analog Output

6-2
Executing the Trigger
For an analog output trigger to occur, you must follow these steps:

1 Queue data in the engine.

2 Configure the appropriate trigger properties.

3 Issue the start function.

4 Issue the trigger function if TriggerType is Manual.

Once the trigger occurs, queued data is output to the hardware, and the device
object stops executing when all the queued data is output.

Note Only one trigger event can occur for analog output objects.

How Many Triggers Occurred?
For analog output objects, only one trigger can occur. You can determine if the
trigger event occurred by returning the value of the TriggersExecuted
property. If TriggersExecuted is 0, then the trigger event did not occur. If
TriggersExecuted is 1, then the trigger event occurred. Event information is
also recorded by the EventLog property. A convenient way to access event log
information is with the showdaqevents function.

For example, suppose you create the analog output object ao for a sound card
and add one channel to it. ao is configured to output 8,000 samples using the
default sampling rate of 8000 Hz.

ao = analogoutput('winsound');
addchannel(ao,1);
data = sin(linspace(0,1,8000))';
putdata(ao,data)
start(ao)
2

Configuring Analog Output Triggers
TriggersExecuted returns the number of triggers executed.

ao.TriggersExecuted
ans =
 1

You can use showdaqevents to return information for all events that occurred
while ao was executing.

showdaqevents(ao)
 1 Start (10:43:25, 0)
 2 Trigger (10:43:25, 0)
 3 Stop (10:43:26, 8000)

For more information about recording and retrieving event information, refer
to “Recording and Retrieving Event Information” on page 6-28.

When Did the Trigger Occur?
You can return the absolute time of the trigger with the InitialTriggerTime
property. Absolute time is returned as a clock vector in the form

[year month day hour minute seconds]

For example, the absolute time of the trigger event for the preceding example is

abstime = ao.InitialTriggerTime
abstime =
1.0e+003 *
 1.9990 0.0040 0.0170 0.0100 0.0430 0.0252

To convert the clock vector to a more convenient form, you can use the sprintf
function.

t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =
10:43:25

As shown in the preceding section, you can also evaluate the absolute time of
the trigger event with the showdaqevents function.
6-23

6 Analog Output

6-2
Device-Specific Hardware Triggers
Most data acquisition devices possess the ability to accept a hardware trigger.
Hardware triggers are processed directly by the hardware and are typically
transistor-transistor logic (TTL) signals. Hardware triggers are used when
speed is required because a hardware device can process an input signal much
faster than software.

The device-specific hardware triggers are presented to you as additional
property values. Hardware triggers for National Instruments and Agilent
Technologies devices are discussed below and in Chapter 11, “Base Property
Reference.”

Note that the available hardware trigger support depends on the board you are
using. Refer to your hardware documentation for detailed information about its
triggering capabilities.

National Instruments
When using National Instruments hardware, there is an additional analog
output trigger type available to you — digital triggering.

If TriggerType is set to HwDigital, the trigger is given by an external TTL
signal that is input directly into the hardware device. The following example
illustrates how to configure a hardware digital trigger.

ao = analogoutput('nidaq',1);
addchannel(ao,0:1);
set(ao,'TriggerType','HwDigital')

With this trigger configuration, ao will not start outputting data until the TTL
signal is detected by the hardware on the appropriate pin.
4

Configuring Analog Output Triggers
The diagram below illustrates how you can connect a digital trigger signal to
an MIO-16E Series board. PFI6/WFTRIG corresponds to pin 5.

Agilent Technologies
When using Agilent Technologies hardware, there are additional analog output
trigger types that you must be aware of: digital triggering on a positive edge
and digital triggering on a negative edge.

If TriggerType is HwDigitalPos, the trigger source is the positive edge of a
digital signal. If TriggerType is HwDigitalNeg, the trigger source is the
negative edge of a digital signal.

In both cases, the digital signal is an external TTL signal that is input directly
into the hardware device. The example below illustrates how to configure such
a trigger.

ao = analogoutput('hpe1432',8);
addchannel(ao,1);
set(ao,'TriggerType','HwDigitalPos')

With this trigger configuration, ao will not start outputting data until the TTL
signal is detected by the hardware.

D/A
PFI6/WFTRIG

TTL signal

MIO-16E Series board
6-25

6 Analog Output

6-2
Events and Callbacks
You can enhance the power and flexibility of your analog output application by
utilizing events. An event occurs at a particular time after a condition is met
and might result in one or more callbacks.

While the analog output object is running, you can use events to display a
message, display data, analyze data, and so on. Callbacks are controlled
through callback properties and callback functions. All event types have an
associated callback property. Callback functions are M-file functions that you
construct to suit your specific data acquisition needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.
Refer to “Creating and Executing Callback Functions” on page 5-51 to learn
how to create callback functions. Note that daqcallback is the default value for
some callback properties.

Event Types
The analog output event types and associated callback properties are described
below.

Table 6-9: Analog Output Callback Properties

Event Type Property Name

Run-time error RuntimeErrorFcn

Samples output SamplesOutputFcn

SamplesOutputFcnCount

Start StartFcn

Stop StopFcn

Timer TimerFcn

TimerPeriod

Trigger TriggerFcn
6

Events and Callbacks
Run-time Error Event. A run-time error event is generated immediately after a
run-time error occurs. This event executes the callback function specified for
RuntimeErrorFcn. Additionally, a toolbox error message is automatically
displayed to the MATLAB workspace. If an error occurs that is not explicitly
handled by the toolbox, then the hardware-specific error message is displayed.

The default value for RunTimeErrorFcn is daqcallback, which displays the
event type, the time the event occurred, the device object name, and the error
message.

Run-time errors include hardware errors and timeouts. Run-time errors do not
include configuration errors such as setting an invalid property value.

Samples Output Event. A samples output event is generated immediately after the
number of samples specified by the SamplesOutputFcnCount property is output
for each channel group member. This event executes the callback function
specified for SamplesOutputFcn.

Start Event. A start event is generated immediately after the start function is
issued. This event executes the callback function specified for StartFcn. When
the callback function has finished executing, Running is automatically set to On
and the device object and hardware device begin executing. The device object
is not started if an error occurs while executing the callback function.

Stop Event. A stop event is generated immediately after the device object and
hardware device stop running. This occurs when

• The stop function is issued.

• The requested number of samples is output.

• A run-time error occurs.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after the device object and hardware device stop running, and
the Running property is set to Off.

Timer Event. A timer event is generated whenever the time specified by the
TimerPeriod property passes. This event executes the callback function
specified for TimerFcn. Time is measured relative to when the device object
starts running.
6-27

6 Analog Output

6-2
Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. For example, a common application for
timer events is to display data. However, because displaying data is a
CPU-intensive task, some of these events might be dropped. To guarantee that
events are not dropped, you can use the SamplesOutputFcn property.

Trigger Event. A trigger event is generated immediately after a trigger occurs.
This event executes the callback function specified for TriggerFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after Sending is set to On.

Recording and Retrieving Event Information
While the analog output object is running, certain information is automatically
recorded in the EventLog property for some of the event types listed in the
preceding section. EventLog is a structure that contains two fields: Type and
Data. The Type field contains the event type. The Data field contains
event-specific information. Events are recorded in the order in which they
occur. The first EventLog entry reflects the first event recorded, the second
EventLog entry reflects the second event recorded, and so on.

The event types recorded in EventLog for analog output objects, as well as the
values for the Type and Data fields, are given below.

Table 6-10: Analog Output Event Information Stored in EventLog

Event Type Type Field Value Data Field Value

Run-time error Error AbsTime

RelSample

String

Start Start AbsTime

RelSample

Stop Stop AbsTime

RelSample
8

Events and Callbacks
Samples output events and timer events are not stored in EventLog.

Note Unless a run-time error occurs, EventLog records a start event, a
trigger event, and stop event for each data acquisition session.

The Data field values are described below.

The AbsTime Field. AbsTime is used by all analog output events stored in
EventLog to indicate the absolute time the event occurred. The absolute time
is returned using the MATLAB clock format.

day-month-year hour:minute:second

The RelSample Field. RelSample is used by all events stored in EventLog to
indicate the sample number that was output when the event occurred.
RelSample is 0 for the start event and for the first trigger event regardless of
the trigger type. RelSample is NaN for any event that occurs before the trigger
executes.

The String Field. String is used by the run-time error event to store the
descriptive message that is generated when a run-time error occurs. This
message is also displayed at the MATLAB command line.

Trigger Trigger AbsTime

RelSample

Table 6-10: Analog Output Event Information Stored in EventLog (Continued)

Event Type Type Field Value Data Field Value
6-29

6 Analog Output

6-3
Example: Retrieving Event Information
Suppose you want to examine the events logged for the example given by
“Example: Queuing Data with putdata” on page 6-18. You can do this by
accessing the EventLog property.

events = AO.EventLog
events =
3x1 struct array with fields:
 Type
 Data

By examining the contents of the Type field, you can list the events that were
recorded while AO was running.

{events.Type}
ans =
 'Start' 'Trigger' 'Stop'

To display information about the trigger event, you must access the Data field,
which stores the absolute time the trigger occurred and the number of samples
output when the trigger occurred.

trigdata = events(2).Data
trigdata =
 AbsTime: [1999 4 16 9 53 19.9508]
 RelSample: 0

You can display a summary of the event log with the showdaqevents function.
For example, to display a summary of the second event contained by the
structure events:

showdaqevents(events,2)
 2 Trigger (09:53:19, 0)

Alternatively, you can display event summary information via the Workspace
browser by right-clicking the device object and selecting Explore -> Show DAQ
Events from the context menu.
0

Events and Callbacks
Examples: Using Callback Properties and Callback
Functions
Examples showing how to create callback functions and configure callback
properties are given below.

Displaying the Number of Samples Output
This example illustrates how to generate samples output events. You can run
this example by typing daqdoc6_4 at the MATLAB command line. The local
callback function daqdoc6_4disp (not shown below) displays the number of
events that were output from the engine whenever the samples output event
occurred.

1 Create a device object — Create the analog output object AO for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AO = analogoutput('winsound');
%AO = analogoutput('nidaq',1);
%AO = analogoutput('mcc',1);

2 Add channels — Add two channels to AO.

chans = addchannel(AO,1:2);
%chans = addchannel(AO,0:1); % For NI and MCC

3 Configure property values — Configure the trigger to repeat four times,
specify daqdoc6_4disp as the M-file callback function to execute whenever
8000 samples are output, generate data to be queued, and queue the data
with one call to putdata.

set(AO,'SampleRate',8000)
ActualRate = get(AO,'SampleRate');
set(AO,'RepeatOutput',4)
set(AO,'SamplesOutputFcnCount',8000)
freq = get(AO,'SamplesOutputFcnCount');
set(AO,'SamplesOutputFcn',@daqdoc6_4disp)
data = sin(linspace(0,2*pi*500,3*freq))';
putdata(AO,[data data])
6-31

6 Analog Output

6-3
4 Output data — Start AO. The waittilstop function blocks the MATLAB
command line, and waits for AO to stop running.

start(AO)
waittilstop(AO,20)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO

Displaying EventLog Information
This example illustrates how callback functions allow you to easily display
information stored in the EventLog property. You can run this example by
typing daqdoc6_5 at the MATLAB command line. The local callback function
daqdoc6_5disp (not shown below) displays the absolute time and relative
sample associated with the start, trigger, and stop events.

1 Create a device object — Create the analog output object AO for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

AO = analogoutput('winsound');
%AO = analogoutput('nidaq',1);
%AO = analogoutput('mcc',1);

2 Add channels — Add one channel to AO.

chan = addchannel(AO,1);
%chan = addchannel(AO,0); % For NI and MCC

3 Configure property values — Specify daqdoc6_5disp as the M-file callback
function to execute when the start, trigger, and stop events occur, generate
data to be queued, and queue the data with one call to putdata.

set(AO,'SampleRate',8000)
ActualRate = get(AO,'SampleRate');
set(AO,'StartFcn',@daqdoc6_5disp)
set(AO,'TriggerFcn',@daqdoc6_5disp)
set(AO,'StopFcn',@daqdoc6_5disp)
data = sin(linspace(0,2*pi*500,ActualRate));
data = [data data data];
2

Events and Callbacks
time = (length(data)/AO.SampleRate);
putdata(AO,data')

4 Output data — Start AO. The waittilstop function blocks the MATLAB
command line, and waits for AO to stop running.

start(AO)
waittilstop(AO,5)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO
6-33

6 Analog Output

6-3
Linearly Scaling the Data: Engineering Units
The Data Acquisition Toolbox provides you with a way to linearly scale data as
it is being queued in the engine. You can associate this scaling with specific
engineering units such as volts or Newtons that you might want to apply to
your data.

The properties associated with engineering units and linearly scaling output
data are given below.

For many devices, the output range is expressed in terms of the gain and
polarity.

Note You can set the engineering units properties on a per-channel basis.
Therefore, you can configure different engineering unit conversions for each
hardware channel.

Linearly scaled output data is given by the formula

scaled value = (original value)(output range)/(units range)

The units range is given by the UnitsRange property, while the output range is
given by the OutputRange property. UnitsRange controls the scaling of data
when it is queued in the engine with the putdata function. OutputRange
specifies the gain and polarity of your D/A subsystem. You should choose an
output range that encompasses the output signal, and that utilizes the
maximum dynamic range of your hardware.

Table 6-11: Analog Output Engineering Units Properties

Property Name Description

OutputRange Specify the range of the analog output hardware
subsystem.

Units Specify the engineering units label.

UnitsRange Specify the range of data as engineering units.
4

Linearly Scaling the Data: Engineering Units
For sound cards, you might have to adjust the volume control to obtain the
full-scale output range of the device. Refer to “Sound Cards” on page A-11 to
learn how to access the volume control for your sound card.

For example, suppose OutputRange is [-10 10], and UnitsRange is [-5 5]. If
a queued value is 2.5, then the scaled value is (2.5)(20/10) or 5, in the
appropriate units.

Note The data acquisition engine always clips out-of-range values. Clipping
means that an out-of-range value is fixed to either the minimum or maximum
value that is representable by the hardware. Clipping is equivalent to
saturation.

Example: Performing a Linear Conversion
This example illustrates how to configure the engineering units properties for
an analog output object connected to a National Instruments PCI-6024E board.

The queued data consists of a 4 volt peak-to-peak sine wave. The UnitsRange
property is configured so that queued data is scaled to the OutputRange
property value, which is fixed at ±10 volts. This scaling utilizes the maximum
dynamic range of the analog output hardware.

You can run this example by typing daqdoc6_6 at the MATLAB command line.

1 Create a device object — Create the analog output object AO for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

AO = analogoutput('nidaq',1);

2 Add channels — Add one hardware channel to AO.

chan = addchannel(AO,0);

3 Configure property values — Create the data to be queued.

freq = 500;
w = 2*pi*freq;
t = linspace(0,2,20000);
data = 2*sin(w*t)';
6-35

6 Analog Output

6-3
Configure the sampling rate to 5 kHz, configure the trigger to repeat two
times, and scale the data to cover the full output range of the D/A converter.
Because the peak-to-peak amplitude of the queued data is 4, UnitsRange is
set to [-2 2], which scales the output data to 20 volts peak-to-peak.

set(AO,'SampleRate',5000)
set(AO,'RepeatOutput',2)
set(chan,'UnitsRange',[-2 2])

Queue the data with one call to putdata.

putdata(AO,data)

4 Output data — Start AO and wait until all the data is output.

start(AO)
waittilstop(AO,6)

5 Clean up — When you no longer need AO, you should remove it from memory
and from the MATLAB workspace.

delete(AO)
clear AO
6

Starting Multiple Device Objects
Starting Multiple Device Objects
With the Data Acquisition Toolbox, you can start multiple device objects. You
might find this feature useful when simultaneously using your hardware’s
analog output (AO) and analog input (AI) subsystems. For example, suppose
you create the analog input object ai and the analog output object ao for a
sound card, and add one channel to each device object.

ai = analoginput('winsound');
addchannel(ai,1);
ao = analogoutput('winsound');
addchannel(ao,1);

You should use manual triggers when starting multiple device objects because
this trigger type executes faster than other trigger types with the exception of
hardware triggers. Additionally, to synchronize the input and output of data,
you should configure the ManualTriggerHwOn property to Trigger for ai.

set([ai ao],'TriggerType','Manual')
set(ai,'ManualTriggerHwOn','Trigger')

Configure ai for continuous acquisition, call the callback function qmoredata
whenever 1000 samples are output, and call daqcallback when ai and ao stop
running.

set(ai,'SamplesPerTrigger',inf)
set(ao,'SamplesOutputFcn',{'qmoredata',ai})
set(ao,'SamplesOutputFcnCount',1000)
set([ai ao],'StopFcn',@daqcallback)

As shown below, the callback function qmoredata extracts data from the engine
and then queues it for output.

function qmoredata(obj,event,ai)
data = getdata(ai,1000);
putdata(obj,data)
6-37

6 Analog Output

6-3
Queue data in the engine, start the device objects, and execute the manual
triggers.

data = zeros(4000,1);
putdata(ao,data)
start([ai ao])
trigger([ai ao])

Note Device objects cannot execute simultaneously unless you use an
external hardware trigger.

You can determine the starting time for each device object with the
InitialTriggerTime property. The difference, in seconds, between the
starting times for ai and ao is

aitime = ai.InitialTriggerTime
aotime = ao.InitialTriggerTime
delta = abs(aotime - aitime);
sprintf('%d',delta(6))
ans =
2.288818e-005

Note that this number depends on the specific platform you are using. To stop
both device objects:

stop([ai ao])

The output from daqcallback is shown below.

Stop event occurred at 13:00:25 for the object: winsound0-AO.
Stop event occurred at 13:00:25 for the object: winsound0-AI.
8

7

Digital Input/Output

Digital I/O (DIO) subsystems are designed to transfer digital values to and from hardware. These
values are handled either as single bits or lines, or as a port, which typically consists of eight lines.
While most popular data acquisition boards include some DIO capability, it is usually limited to
simple operations and special dedicated hardware is required for performing advanced DIO
operations. The Data Acquisition Toolbox provides access to digital I/O subsystems through a digital
I/O object. The DIO object can be associated with a parallel port or with a DIO subsystem on a data
acquisition board.

The purpose of this chapter is to show you how to perform data acquisition tasks using your digital
I/O hardware. The sections are as follows.

Note that the Data Acquisition Toolbox does not directly support buffered DIO or handshaking
(latching). However, you can write your own M-code to support this functionality. Buffered DIO
means that the data is stored in the engine. Handshaking allows the DIO subsystem to input or
output values after receiving a digital pulse.

Creating a Digital I/O
Object (p. 7-2)

Create a MATLAB object that represents the digital I/O subsystem

Adding Lines to a Digital
I/O Object (p. 7-4)

Associate hardware lines with the digital I/O object

Writing and Reading Digital
I/O Line Values (p. 7-12)

Write values to digital lines, and read values from digital lines

Generating Timer Events
(p. 7-17)

Execute the digital I/O object and configure properties to generate
timer events

Evaluating the Digital I/O
Object Status (p. 7-20)

Return the values of certain properties in a convenient display format

7 Digital Input/Output

7-2
Creating a Digital I/O Object
You create a digital I/O (DIO) object with the digitalio function. digitalio
accepts the adaptor name and the hardware device ID as input arguments. For
parallel ports, the device ID is the port label (LPT1, LPT2, or LPT3). For data
acquisition boards, the device ID refers to the number associated with the
board when it is installed. Note that some vendors refer to the device ID as the
device number or the board number. Use the daqhwinfo function to determine
the available adaptors and device IDs.

Each DIO object is associated with one parallel port or one subsystem. For
example, to create a DIO object associated with a National Instruments board:

dio = digitalio('nidaq',1);

The digital I/O object dio now exists in the MATLAB workspace. You can
display the class of dio with the whos command.

whos dio
 Name Size Bytes Class

 dio 1x1 1308 digitalio object

Grand total is 40 elements using 1308 bytes

Once the object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the object based on its class type and adaptor.

You can display the values of these properties for dio with the get function.

get(dio,{'Name','Type'})
ans =
 'nidaq1-DIO' 'Digital IO'

Table 7-1: Descriptive Digital I/O Properties

Property Name Description

Name Specify a descriptive name for the device object.

Type Indicate the device object type.

Creating a Digital I/O Object
The Parallel Port
The PC supports up to three parallel ports that are assigned the labels LPT1,
LPT2, and LPT3. You can use any of these standard ports as long as they use
the usual base addresses, which are (in hex) 378, 278, and 3BC, respectively.
The port labels and addresses are typically configured through the PC’s BIOS.
Additional ports, or standard ports not assigned the usual base addresses, are
not accessible by the toolbox.

Most PCs that support MATLAB will include a single parallel port with label
LPT1 and base address 378. To create a DIO object for this port,

parport = digitalio('parallel','LPT1');

Note The parallel port is not locked by MATLAB. Therefore, other
applications or other instances of MATLAB can access the same parallel port,
which can result in a conflict.
7-3

7 Digital Input/Output

7-4
Adding Lines to a Digital I/O Object
After creating the digital I/O (DIO) object, you must add lines to it. As shown
by the figure in “Adding Channels or Lines” on page 3-8, you can think of a
device object as a container for lines. The collection of lines contained by the
DIO object is referred to as a line group. A line group consists of a mapping
between hardware line IDs and MATLAB indices (see below).

When adding lines to a DIO object, you must follow these rules:

• The lines must reside on the same hardware device. You cannot add lines
from different devices, or from different subsystems on the same device.

• You can add a line only once to a given digital I/O object. However, a line can
be added to as many different digital I/O objects as you desire.

• You can add lines that reside on different ports to a given digital I/O object.

You add lines to a digital I/O object with the addline function. addline
requires the device object, at least one hardware line ID, and the direction
(input or output) of each added line as input arguments. You can optionally
specify port IDs, descriptive line names, and an output argument. For example,
to add eight output lines from port 0 to the device object dio created in the
preceding section:

hwlines = addline(dio,0:7,'out');

The output argument hwlines is a line object that reflects the line group
contained by dio. You can display the class of hwlines with the whos command.

whos hwlines
 Name Size Bytes Class

 hwlines 8x1 536 dioline object

Grand total is 13 elements using 536 bytes

You can use hwlines to easily access lines. For example, you can configure or
return property values for one or more lines. As described in “Referencing
Individual Hardware Lines” on page 7-9, you can also access lines with the
Line property.

Adding Lines to a Digital I/O Object
Once you add lines to a DIO object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the lines based on their class type and ID.

You can display the values of these properties for chans with the get function.

get(hwlines,{'HwLine','Index','Parent','Type'})
ans =
 [0] [1] [1x1 digitalio] 'Line'
 [1] [2] [1x1 digitalio] 'Line'
 [2] [3] [1x1 digitalio] 'Line'
 [3] [4] [1x1 digitalio] 'Line'
 [4] [5] [1x1 digitalio] 'Line'
 [5] [6] [1x1 digitalio] 'Line'
 [6] [7] [1x1 digitalio] 'Line'
 [7] [8] [1x1 digitalio] 'Line'

Line and Port Characteristics
As described in the preceding section, when you add lines to a DIO object, they
must be configured for either input or output. You read values from an input
line and write values to an output line. Whether a given hardware line is
addressable for input or output depends on the port it resides on. You can
classify digital I/O ports into these two groups based on your ability to address
lines individually:

• Port-configurable devices — You cannot address the lines associated with a
port-configurable device individually. Therefore, you must configure all the

Table 7-2: Descriptive Digital I/O Line Properties

Property Name Description

HwLine Specify the hardware line ID.

Index Indicate the MATLAB index of a hardware line.

Parent Indicate the parent (device object) of a line.

Type Indicate a line.
7-5

7 Digital Input/Output

7-6
lines for either input or output. If you attempt to mix the two configurations,
an error is returned.

You can add any number of available port-configurable lines to a DIO object.
However, the engine will address all lines behind the scenes. For example, if
one line is added to a DIO object, then you automatically get all lines.
Therefore, if a DIO object contains lines from a port-configurable device, and
you write a value to one or more of those lines, then all the lines are written
to even if they are not contained by the device object.

• Line-configurable devices — You can address the lines associated with a
line-configurable device individually. Therefore, you can configure
individual lines for either input or output. Additionally, you can read and
write values on a line-by-line basis. Note that for National Instruments E
Series hardware, port 0 is always line-configurable, while all other ports are
port-configurable.

You can return the line and port characteristics with the daqhwinfo function.
For example, National Instruments AT-MIO-16DE-10 board has four ports
with eight lines per port. To return the digital I/O characteristics for this board:

hwinfo = daqhwinfo(dio);

Display the line characteristics for each port.

hwinfo.Port(1)
ans =
 ID: 0
 LineIDs: [0 1 2 3 4 5 6 7]
 Direction: 'in/out'
 Config: 'line'

hwinfo.Port(2)
ans =
 ID: 2
 LineIDs: [0 1 2 3 4 5 6 7]
 Direction: 'in/out'
 Config: 'port'

Adding Lines to a Digital I/O Object
hwinfo.Port(3)
ans =
 ID: 3
 LineIDs: [0 1 2 3 4 5 6 7]
 Direction: 'in/out'
 Config: 'port'

hwinfo.Port(4)
ans =
 ID: 4
 LineIDs: [0 1 2 3 4 5 6 7]
 Direction: 'in/out'
 Config: 'port'

This information tells you that you can configure all 32 lines for either input or
output, and that the first port is line-configurable while the remaining ports
are port-configurable.

Parallel Port Characteristics
The parallel port consists of eight data lines, four control lines, five status lines,
and eight ground lines. In normal usage, the lines are controlled by the host
computer software and the peripheral device following a protocol such as IEEE
Standard 1284-1994. The protocol defines procedures for transferring data
such as handshaking, returning status information, and so on. However, the
toolbox uses the parallel port as a basic digital I/O device, and no protocol is
needed. Therefore, you can use the port to input and output digital values just
as you would with a typical DIO subsystem.

To access the physical parallel port lines, most PCs come equipped with one
25-pin female connector, which is shown below.

The lines use TTL logic levels. A line is high (true or asserted) when it is a TTL
high level, while a line is low (false or unasserted) when it is a TTL low level.
The exceptions are lines 1, 11, 14, and 17, which are hardware inverted.

1

25

25-pin female parallel port
connector with pin assignments.
7-7

7 Digital Input/Output

7-8
The toolbox groups the 17 nonground lines into three separate ports. The port
IDs and the associated pin numbers are given below.

Note that in some cases, port 0 lines might be unidirectional and only output
data. If supported by the hardware, you can configure these lines for both input
and output with your PC’s BIOS by selecting a bidirectional mode such as EPP
(Enhanced Parallel Port) or ECP (Extended Capabilities Port).

The parallel port characteristics for the DIO object parport are shown below.

hwinfo = daqhwinfo(parport);
hwinfo.Port(1)
ans =

 ID: 0
 LineIDs: [0 1 2 3 4 5 6 7]
 Direction: 'in/out'
 Config: 'port'

hwinfo.Port(2)
ans =

 ID: 1
 LineIDs: [0 1 2 3 4]
 Direction: 'in'
 Config: 'port'

Table 7-3: Parallel Port IDs and Pin Numbers

Port ID Pins Description

0 2-9 Eight I/O lines, with pin 9 being the most significant
bit (MSB).

1 10-13,
and 15

Five input lines used for status

2 1, 14, 16,
and 17

Four I/O lines used for control

Adding Lines to a Digital I/O Object
hwinfo.Port(3)
ans =

 ID: 2
 LineIDs: [0 1 2 3]
 Direction: 'in/out'
 Config: 'port'

This information tells you that all 17 lines are port-configurable, you can input
and output values using the 12 lines associated with ports 0 and 2, and that
you can only input values from the five lines associated with port 1.

For easy reference, the LineName property is automatically populated with a
name that includes the port pin number.

Referencing Individual Hardware Lines
As described in the preceding section, you can access lines with the Line
property or with a line object. To reference individual lines, you must specify
either MATLAB indices or descriptive line names.

MATLAB Indices
Every hardware line contained by a DIO object has an associated MATLAB
index that is used to reference the line. When adding lines with the addline
function, index assignments are made automatically. The line indices start at
1 and increase monotonically up to the number of line group members. The first
line indexed in the line group represents the least significant bit (LSB), and the
highest indexed line represents the most significant bit (MSB). Unlike adding
channels with the addchannel function, you cannot manually assign line
indices with addline.

For example, the digital I/O object dio created in the preceding section has the
MATLAB indices 1 through 8 automatically assigned to the hardware lines 0
through 7, respectively. To swap the first two hardware lines so that line ID 1
is the LSB, you can supply the appropriate index to hwlines and use the
HwLine property.

hwlines(1).HwLine = 1;
hwlines(2).HwLine = 0;
7-9

7 Digital Input/Output

7-1
Alternatively, you can use the Line property.

dio.Line(1).HwLine = 1;
dio.Line(2).HwLine = 0;

Descriptive Line Names
Choosing a unique, descriptive name can be a useful way to identify and
reference lines — particularly for large line groups. You can associate
descriptive names with hardware lines with the addline function. For
example, suppose you want to add 8 lines to dio, and you want to associate the
name TrigLine with the first line added.

addline(dio,0,'out','TrigLine');
addline(dio,1:7,'out');

Alternatively, you can use the LineName property.

addline(dio,0:7,'out');
dio.Line(1).LineName = 'TrigLine';

You can now use the line name to reference the line.

dio.TrigLine.Direction = 'in';

Example: Adding Lines for National Instruments Hardware
This example illustrates various ways you can add lines to a DIO object
associated with a National Instruments AT-MIO-16DE-10 board. This board is
a multiport device whose characteristics are described in “Line and Port
Characteristics” on page 7-5.

To add eight input lines to dio from port 0:

addline(dio,0:7,'in');

To add four input lines and four output lines to dio from port 0:

addline(dio,0:7,{'in','in','in','in','out','out','out','out'});

Suppose you want to add the first two lines from port 0 configured for input,
and the first two lines from port 2 configured for output. There are four ways
to do this. The first way requires only one call to addline because it uses the
hardware line IDs, and not the port IDs.

addline(dio,[0 1 8 9],{'in','in','out','out'});
0

Adding Lines to a Digital I/O Object
The second way requires two calls to addline, and specifies one line ID and
multiple port IDs for each call.

addline(dio,0,[0 2],{'in','out'});
addline(dio,1,[0 2],{'in','out'});

The third way requires two calls to addline, and specifies multiple line IDs and
one port ID for each call.

addline(dio,0:1,0,'in');
addline(dio,0:1,2,'out');

Lastly, you can use four addline calls — one for each line added.
7-11

7 Digital Input/Output

7-1
Writing and Reading Digital I/O Line Values
After you add lines to a digital I/O (DIO) object, you can:

• Write values to lines

• Read values from lines

Note Unlike analog input and analog output objects, you do not control the
behavior of DIO objects by configuring properties. This is because buffered
DIO is not supported, and data is not stored in the engine. Instead, you either
write values directly to, or read values directly from the hardware lines.

Writing Digital Values
You write values to digital lines with the putvalue function. putvalue requires
the DIO object and the values to be written as input arguments. You can
specify the values to be written as a decimal value or as a binary vector (binvec).
A binary vector is a logical array that is constructed with the least significant
bit (LSB) in the first column and the most significant bit (MSB) in the last
column. For example, the decimal value 23 is written in binvec notation as [1
1 1 0 1] = 20 + 21 + 22 + 24. You might find that binvecs are easier to work with
than decimal values because there is a clear association between a given line
and the value (1 or 0) that is written to it. You can convert decimal values to
binvec values with the dec2binvec function.

For example, suppose you create the digital I/O object dio and add eight output
lines to it from port 0.

dio = digitalio('nidaq',1);
addline(dio,0:7,'out');

To write a value of 23 to the eight lines contained by dio, you can write to the
device object.

data = 23;
putvalue(dio,data)

Alternatively, you can write to individual lines through the Line property.

putvalue(dio.Line(1:8),data)
2

Writing and Reading Digital I/O Line Values
To write a binary vector of values using the device object and the Line property:

bvdata = dec2binvec(data,8);
putvalue(dio,bvdata)
putvalue(dio.Line(1:8),bvdata)

The second input argument supplied to dec2binvec specifies the number of bits
used to represent the decimal value. Because the preceding commands write to
all eight lines contained by dio, an eight element binary vector is required. If
you do not specify the number of bits, then the minimum number of bits needed
to represent the decimal value is used.

Alternatively, you can create the binary vector without using dec2binvec.

bvdata = logical([1 1 1 0 1 0 0 0]);
putvalue(dio,bvdata)

Rules for Writing Digital Values
Writing values to digital I/O lines follows these rules:

• If the DIO object contains lines from a port-configurable device, then the
data acquisition engine writes to all lines associated with the port even if
they are not contained by the device object.

• When writing decimal values,

- If the value is too large to be represented by the lines contained by the
device object, then an error is returned.

- You can write to a maximum of 32 lines. To write to more than 32 lines,
you must use a binvec value.

• When writing binvec values,

- You can write to any number of lines.

- There must be an element in the binary vector for each line you write to.

• You can always read from a line configured for output. Reading values is
discussed in “Reading Digital Values” on page 7-14.

• An error is returned if you write a negative value, or if you write to a line
configured for input.
7-13

7 Digital Input/Output

7-1
Reading Digital Values
You can read values from one or more lines with the getvalue function.
getvalue requires the DIO object as an input argument. You can optionally
specify an output argument, which represents the returned values as a binary
vector. Binary vectors are described in “Writing Digital Values” on page 7-12.

For example, suppose you create the digital I/O object dio and add eight input
lines to it from port 0.

dio = digitalio('nidaq',1);
addline(dio,0:7,'in');

To read the current value of all the lines contained by dio:

portval = getvalue(dio)
portval =
 1 1 1 0 1 0 0 0

To read the current values of the first five lines contained by dio:

lineval = getvalue(dio.Line(1:5))
lineval =
 1 1 1 0 1

You can convert a binvec to a decimal value with the binvec2dec function. For
example, to convert the binary vector lineval to a decimal value:

out = binvec2dec(lineval)
out =
 23
4

Writing and Reading Digital I/O Line Values
Rules for Reading Digital Values
Reading values from digital I/O lines follows these rules:

• If the DIO object contains lines from a port-configurable device, then all lines
are read even if they are not contained by the device object. However, only
values from the lines contained by the object are returned.

• You can always read from a line configured for output.

• For National Instruments hardware, lines configured for input return a
value of 1 by default.

• getvalue always returns a binary vector (binvec). To convert the binvec to a
decimal value, use the binvec2dec function.

Example: Writing and Reading Digital Values
This example illustrates how to read and write digital values using a
line-configurable subsystem. With line-configurable subsystems, you can
transfer values on a line-by-line basis.

You can run this example by typing daqdoc7_1 at the MATLAB command line.

1 Create a device object — Create the digital I/O object dio for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

dio = digitalio('nidaq',1);

2 Add lines — Add eight output lines from port 0 (line-configurable).

addline(dio,0:7,'out');

3 Read and write values — Write a value of 13 to the first four lines as a
decimal number and as a binary vector, and read back the values.

data = 13;
putvalue(dio.Line(1:4),data)
val1 = getvalue(dio);
bvdata = dec2binvec(data);
putvalue(dio.Line(1:4),bvdata)
val2 = getvalue(dio);
7-15

7 Digital Input/Output

7-1
Write a value of 3 to the last four lines as a decimal number and as a binary
vector, and read back the values.

data = 3;
putvalue(dio.Line(5:8),data)
val3 = getvalue(dio.Line(5:8));
bvdata = dec2binvec(data,4);
putvalue(dio.Line(5:8),bvdata)
val4 = getvalue(dio.Line(5:8));

Read values from the last four lines but switch the most significant bit
(MSB) and the least significant bit (LSB).

val5 = getvalue(dio.Line(8:-1:5));

4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio
6

Generating Timer Events
Generating Timer Events
The fact that analog input and analog output objects make use of data stored
in the engine and clocked I/O leads to the concept of a “running” device object
and the generation of events.

However, because the Data Acquisition Toolbox does not support buffered
digital I/O (DIO) operations, DIO objects do not store data in the engine.
Additionally, reading and writing line values are not clocked at a specific rate
in the way that data is sampled by an analog input or analog output subsystem.
Instead, values are either written directly to digital lines with putvalue, or
read directly from digital lines with getvalue.

Therefore, the concept of a running DIO object does not make sense in the same
way that it does for analog I/O. However, you can “run” a DIO object to perform
one task: generate timer events. You can use timer events to update and
display the state of the DIO object. Refer to the diopanel demo for an example.

Timer Events
The only event supported by DIO objects is a timer event. Timer events occur
after a specified period of time has passed. Properties associated with
generating timer events are given below.

A timer event is generated whenever the time specified by TimerPeriod passes.
This event executes the callback function specified for TimerFcn. Time is
measured relative to when the device object starts running (Running is On).
Starting a DIO object is discussed in the next section.

Table 7-4: Digital I/O Timer Event Properties

Property Name Description

Running Indicate if the device object is running.

TimerFcn Specify the M-file callback function to execute
whenever a predefined period of time passes.

TimerPeriod Specify the period of time between timer events.
7-17

7 Digital Input/Output

7-1
Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. For example, a common application for
timer events is to display data. However, because displaying data can be a
CPU-intensive task, some of these events might be dropped. For digital I/O
objects, timer events are typically used to display the state of the object.

To see how to construct a callback function, refer to “Creating and Executing
Callback Functions” on page 5-51 or the example below.

Starting and Stopping a Digital I/O Object
You use the start function to start a DIO object. For example, to start the
digital I/O object dio:

start(dio)

After start is issued, the Running property is automatically set to On, and
timer events can be generated. If you attempt to start a digital I/O object that
does not contain any lines or that is already running, an error is returned.

A digital I/O object will stop executing under these conditions:

• The stop function is issued.

• An error occurred in the system.

When the device object stops, Running is automatically set to Off.
8

Generating Timer Events
Example: Generating Timer Events
This example illustrates how to generate timer events for a DIO object. The
callback function daqcallback displays the event type and device object name.
Note that you must issue a stop command to stop the execution of the object.

You can run this example by typing daqdoc7_2 at the MATLAB command line.

1 Create a device object — Create the digital I/O object dio for a National
Instruments board. The installed adaptors and hardware IDs are found with
daqhwinfo.

dio = digitalio('nidaq',1);

2 Add lines — Add eight input lines from port 0 (line-configurable).

addline(dio,0:7,'in');

3 Configure property values — Configure the timer event to call
daqcallback every five seconds.

set(dio,'TimerFcn',@daqcallback)
set(dio,'TimerPeriod',5.0)

Start the digital I/O object. You must issue a stop command when you no
longer want to generate timer events.

start(dio)

The pause command ensures that two timer events are generated when you
run daqdoc7_2 from the command line.

pause(11)

4 Clean up — When you no longer need dio, you should remove it from
memory and from the MATLAB workspace.

delete(dio)
clear dio
7-19

7 Digital Input/Output

7-2
Evaluating the Digital I/O Object Status
You can evaluate the status of a digital I/O (DIO) object by

• Returning the value of the Running property (this is useful only if timer
events are generated)

• Invoking the display summary

The Display Summary
You can invoke the display summary by typing a DIO object or a line object at
the MATLAB command line, or by excluding the semicolon when

• Creating a DIO object

• Adding lines

• Configuring property values using the dot notation

You can also display summary information via the Workspace browser by
right-clicking a toolbox object and selecting Explore -> Display Summary
from the context menu.

The displayed information is designed so you can quickly evaluate the status
of your data acquisition session. The display is divided into two main sections:
general summary information and line summary information.

General Summary Information
The general display summary includes the device object type and the hardware
device name, followed by the port parameters. The port parameters include the
port ID, and whether the associated lines are configurable for reading or
writing.

Line Summary Information
The line display summary includes property values associated with

• The hardware line mapping

• The line name

• The port ID

• The line direction
0

Evaluating the Digital I/O Object Status
The display summary for the example given in “Example: Generating Timer
Events” on page 7-19 is shown below.

You can use the Line property to display only the line summary information.

DIO.Line

Display Summary of DigitalIO (DIO) Object Using 'PCI-6024E'.

Port Parameters: Port 0 is line configurable for reading and writing.

Engine status: Engine not required.

DIO object contains line(s):

 Index: LineName: HwLine: Port: Direction:

 1 '' 0 0 'In'

 2 '' 1 0 'In'

 3 '' 2 0 'In'

 4 '' 3 0 'In'

 5 '' 4 0 'In'

 6 '' 5 0 'In'

 7 '' 6 0 'In'

 8 '' 7 0 'In'

General display
summary

Line display
summary
7-21

7 Digital Input/Output

7-2
2

8

Saving and Loading the
Session

This chapter describes how to save and load information associated with a data acquisition session.
The sections are as follows.

Saving and Loading Device
Objects (p. 8-2)

Save device objects and their associated property values to disk as an
M-file or as a MAT-file

Logging Information to
Disk (p. 8-5)

Log acquired data, device objects, and hardware and event information
to disk

8 Saving and Loading the Session

8-2
Saving and Loading Device Objects
You can save a device object to disk using two possible formats:

• As an M-file using the obj2mfile function

• As a MAT-file using the save command

For analog input objects, you can also save acquired data, hardware
information, and so on to a log file. Refer to “Logging Information to Disk” on
page 8-5 for more information.

Saving Device Objects to an M-File
You can save a device object to an M-file using the obj2mfile function.
obj2mfile provides you with these options:

• Save all property values, or save only those property values that differ from
their default values.

Read-only property values are not saved. Therefore, read-only properties use
their default values when you load the device object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo
function or examine the property reference pages.

• Save property values using the set syntax, the dot notation, or named
referencing (if defined).

If the UserData property is not empty, or if a callback property is set to a cell
array of values or a function handle, then the data stored in these properties
is written to a MAT-file when the device object is saved. The MAT-file has the
same name as the M-file containing the device object code.

For example, suppose you create the analog input object ai for a sound card,
add two channels to it, and configure several property values.

ai = analoginput('winsound');
addchannel(ai,1:2,{'Temp1';'Temp2'});
time = now;
set(ai,'SampleRate',11025,'TriggerRepeat',4)
set(ai,'TriggerFcn',{@mycallback,time})
start(ai)

Saving and Loading Device Objects
The following command saves ai and the modified property values to the M-file
myai.m. Because the TriggerFcn property is set to a cell array of values, its
value is automatically written to the MAT-file myai.mat.

obj2mfile(ai,'myai.m');

Created: d:\v6\myfiles\myai.m
Created: d:\v6\myfiles\myai.mat

Use the type command to display myai.m at the command line.

Loading the Device Object
To load a device object that was saved as an M-file into the MATLAB
workspace, type the name of the M-file at the command line. For example, to
load ai from the M-file myai.m:

ai = myai

Note that the read-only properties such as SamplesAcquired and
SamplesAvailable are restored to their default values.

get(ai,{'SamplesAcquired','SamplesAvailable'})
ans =
 [0] [0]

When loading ai into the workspace, the MAT-file myai.mat is automatically
loaded and the TriggerFcn property value is restored.

ai.TriggerFcn
ans =
 [@mycallback] [7.3071e+005]
8-3

8 Saving and Loading the Session

8-4
Saving Device Objects to a MAT-File
You can save a device object to a MAT-file just as you would any workspace
variable — using the save command. For example, to save the analog input
object ai and the variable time defined in the preceding section to the MAT-file
myai1.mat:

save myai1 ai time

Read-only property values are not saved. Therefore, read-only properties use
their default values when you load the device object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo function
or examine the property reference pages.

Loading the Device Object
To load a device object that was saved to a MAT-file into the MATLAB
workspace, use the load command. For example, to load ai and time from
MAT-file myai1.mat:

load myai1

Logging Information to Disk
Logging Information to Disk
While an analog input object is running, you can log this information to a disk
file:

• Acquired data

• Event information

• Device object and channel information

• Hardware information

Logging information to disk provides a permanent record of your data
acquisition session, and is an easy way to debug your application.

As shown below, you can think of the logged information as a stream of data
and events.

The properties associated with logging information to a disk file are given
below.

Table 8-1: Analog Input Logging Properties

Property Name Description

LogFileName Specify the name of the disk file to which information is
logged.

Logging Indicate if data is being logged.

Time

...Data Data

Trigger 1 Trigger 2 Trigger n

N
a
N

Start Stop

N
a
N

Data logged to file
8-5

8 Saving and Loading the Session

8-6
You can initiate logging by setting LoggingMode to Disk or Disk&Memory. A new
log file is created each time you issue the start function, and each different
analog input object must log information to a separate log file. Writing to disk
is performed as soon as possible after the current data block is filled.

You can choose whether a log file is overwritten or if multiple log files are
created with the LogToDiskMode property. If LogToDiskMode is Overwrite, the
log file is overwritten. If LogToDiskMode is Index, new log files are created, each
with an indexed name based on the value of LogFileName.

Specifying a Filename
You specify the name of the log file with the LogFileName property. You can
specify any value for LogFileName, including a directory path, provided the
filename is supported by your operating system. Additionally, if
LogToDiskMode is Index, then the log filename also follows these rules:

• Indexed log filenames are identified by a number. This number precedes the
filename extension and is incremented by one for successive log files.

• If no number is specified as part of the initial log filename, then the first log
file does not have a number associated with it. For example, if LogFileName
is myfile.daq, then myfile.daq is the name of the first log file,
myfile01.daq is the name of the second log file, and so on.

• LogFileName is updated after the log file is written (after the stop event
occurs).

• If the specified log filename already exists, then the existing file is
overwritten.

LoggingMode Specify the destination for acquired data.

LogToDiskMode Specify whether data, device object information, and
hardware information is saved to one disk file or to
multiple disk files.

Table 8-1: Analog Input Logging Properties (Continued)

Property Name Description

Logging Information to Disk
Retrieving Logged Information
You retrieve logged information with the daqread function. You can retrieve
any part of the information stored in a log file with one call to daqread.
However, you will probably use daqread in one of these two ways:

• Retrieving data and time information

• Retrieving event, device object, channel, and hardware information

Retrieving Data and Time Information
You can characterize logged data by the sample number or the time the sample
was acquired. To retrieve data and time information, you use the syntax shown
below:

[data,time,abstime] = daqread('file','P1',V1,'P2',V2,...);

where

• data is the retrieved data. Data is returned as an m-by-n matrix where m is
the number of samples and n is the number of channels.

• time (optional) is the relative time associated with the retrieved data. Time
is returned as an m-by-1 matrix where m is the number of samples.

• abstime (optional) is the absolute time of the first trigger. Absolute time is
returned as a clock vector.

• file is the name of the log file.

• 'P1',V2,'P2',V2,…(optional) are the property name/property value pairs,
which allow you to select the amount of data to retrieve, among other things
(see below).

daqread returns data and time information in the same format as getdata. If
data from multiple triggers is retrieved, each trigger is separated by a NaN.
8-7

8 Saving and Loading the Session

8-8
You select the amount of data returned and the format of that data with the
properties given below.

The Samples, Time, and Triggers properties are mutually exclusive. If none of
these three properties is specified, then all the data is returned.

Retrieving Event, Device Object, Channel, and Hardware Information
You can retrieve event, device object, channel, and hardware information,
along with data and time information, using the syntax shown below.

[data,time,abstime,events,daqinfo] =
daqread('file','P1',V1,'P2',V2,...);

events is a structure containing event information associated with the logged
data. The events retrieved depend on the value of the Samples, Time, or
Triggers property. At a minimum, the trigger event associated with the
selected data is returned. The entire event log is returned to events only if
Samples, Time, or Triggers is not specified.

daqinfo is a structure that stores device object, channel, and hardware
information in two fields: ObjInfo and HwInfo. ObjInfo is a structure
containing property values for the device object and any channels it contains.
The property values are returned in the same format as returned by get.
HwInfo is a structure containing hardware information. The hardware
information is identical to the information returned by daqhwinfo(obj).

Table 8-2: daqread Properties

Property Name Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be
specified as a cell array.

DataFormat Specify the data format as doubles or native.

TimeFormat Specify the time format as vector or matrix.

Logging Information to Disk
Alternatively, you can return only object, channel, and hardware information
with the command

daqinfo = daqread('file','info');

Note When you retrieve object information, the entire event log is returned
to daqinfo.ObjInfo.EventLog regardless of the number of samples retrieved.

Example: Logging and Retrieving Information
This example illustrates how to log information to a disk file and then retrieve
the logged information to MATLAB using various calls to daqread.

A sound card is configured for stereo acquisition, data is logged to memory and
to a disk file, four triggers are issued, and 2 seconds of data are collected for
each trigger at a sampling rate of 8 kHz. You can run this example by typing
daqdoc8_1 at the MATLAB command line.

1 Create a device object — Create the analog input object ai for a sound
card. The installed adaptors and hardware IDs are found with daqhwinfo.

ai = analoginput('winsound');
%ai = analoginput('nidaq',1);
%ai = analoginput('mcc',1);

2 Add channels — Add two hardware channels to ai.

ch = addchannel(ai,1:2);
%ch = addchannel(ai,0:1); % For NI and MCC

3 Configure property values — Define a 2 second acquisition for each
trigger, set the trigger to repeat three times, and log information to the file
file00.daq.

duration = 2; % Two seconds of data for each trigger
set(ai,'SampleRate',8000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger',duration*ActualRate)
set(ai,'TriggerRepeat',3)
set(ai,'LogFileName','file00.daq')
set(ai,'LoggingMode','Disk&Memory')
8-9

8 Saving and Loading the Session

8-1
4 Acquire data — Start ai, wait for ai to stop running, and extract all the
data stored in the log file as sample-time pairs.

start(ai)
[data,time] = daqread('file00.daq');

Plot the data and label the figure axes.

subplot(211), plot(data)
title('Logging and Retrieving Data')
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data)
xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Make sure ai has stopped running before cleaning up the workspace.

waittilstop(ai,2)

5 Clean up — When you no longer need ai, you should remove it from memory
and from the MATLAB workspace.

delete(ai)
clear ai

Retrieving Data Based on Samples
You can retrieve data based on samples using the Samples property. To retrieve
samples 1000 to 2000 for both sound card channels:

[data,time] = daqread('file00.daq','Samples',[1000 2000]);

Plot the data and label the figure axes.

subplot(211), plot(data);
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);
xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Retrieving Data Based on Channels
You can retrieve data based on channels using the Channels property. To
retrieve samples 1000 to 2000 for the second sound card channel:

[data,time] = daqread('file00.daq','Samples',[1000 2000],
'Channels',2);
0

Logging Information to Disk
Plot the data and label the figure axes.

subplot(211), plot(data);
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);
xlabel('Time (seconds)'); ylabel('Signal (Volts)')

Alternatively, you can retrieve data for the second sound card channel by
specifying the channel name.

[data,time] = daqread('file00.daq','Samples',[1000 2000],
'Channels',{'Right'});

Retrieving Data Based on Triggers
You can retrieve data based on triggers using the Triggers property. To
retrieve all the data associated with the second and third triggers for both
sound card channels:

[data,time] = daqread('file00.daq','Triggers',[2 3]);

Plot the data and label the figure axes.

subplot(211), plot(data);
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time,data);
xlabel('Time (seconds)'), ylabel('Signal (Volts)')

Retrieving Data Based on Time
You can retrieve data based on time using the Time property. Time must be
specified in seconds and Time=0 corresponds to the first logged sample. To
retrieve the first 25% of the data acquired for the first trigger:

[data,time] = daqread('file00.daq','Time',[0 0.5]);

Plot the data and label the figure axes.

subplot(211), plot(data);
xlabel('Samples'), ylabel('Signal (Volts)')
subplot(212), plot(time, data);
xlabel('Time (seconds)'), ylabel('Signal (Volts)')
8-11

8 Saving and Loading the Session

8-1
Retrieving Event, Object, Channel, and Hardware Information
You can retrieve event, object, channel, and hardware information by
specifying the appropriate arguments to daqread. For example, to retrieve all
event information, you must return all the logged data.

[data,time,abstime,events,info] = daqread('file00.daq');
{events.Type}
ans =
'Start' 'Trigger' 'Trigger' 'Trigger' 'Trigger' 'Stop'

If you retrieve part of the data, then only the events associated with the
requested data are returned.

[data,time,abstime,events,info] = daqread('file00.daq',
'Trigger',[1 3]);
{events.Type}
ans =
'Trigger' 'Trigger' 'Trigger'

You can retrieve the entire event log as well as object and hardware
information by including info as an input argument to daqread.

daqinfo = daqread('file00.daq','info')
daqinfo =
 ObjInfo: [1x1 struct]
 HwInfo: [1x1 struct]

To return the event log information:

eventinfo = daqinfo.ObjInfo.EventLog
eventinfo =
6x1 struct array with fields:
 Type
 Data
2

9

softscope: The Data
Acquisition Oscilloscope

The data acquisition Oscilloscope is an interactive graphical user interface (GUI) for streaming data
into a display. The sections are as follows.

This examples in this chapter use Measurement Computing’s Demo-Board, which is installed with
InstaCal or the Universal Library driver. The Demo-Board is a software simulation of an 8-channel,
16-bit analog input device. You can associate waveforms such as a sine wave or a square wave, or
input from a data file with the analog input channels. You can download InstaCal or the Universal
Library driver from http://www.measurementcomputing.com.

Opening the Oscilloscope
(p. 9-2)

Associate hardware with the Oscilloscope and open the application

Displaying Channels (p. 9-4) Display hardware, math, and reference channels

Scaling the Channel Data
(p. 9-11)

Scale channel data horizontally and vertically

Triggering the Oscilloscope
(p. 9-14)

Control how the data acquisition is initiated

Making Measurements
(p. 9-17)

Make measurements on acquired data using predefined or custom
measurement types

Exporting Data (p. 9-23) Save channel data or measurements to the workspace, a figure, or a
MAT-file

Saving and Loading the
Oscilloscope Configuration
(p. 9-25)

Save and load the hardware configuration, the property values, and
the state of the Oscilloscope

9 softscope: The Data Acquisition Oscilloscope

9-2
Opening the Oscilloscope
To open the Oscilloscope, create an analog input object for the Measurement
Computing Demo-Board, add two hardware channels, and supply the object to
the softscope function.

ai = analoginput('mcc',0)
addchannel(ai,0:1)
softscope(ai)

As shown below, the Oscilloscope opens with a single display containing a
marker for each added hardware channel, a channel scaling panel, and a
trigger panel.

Note that you can also open the Oscilloscope by

• Typing softscope without any arguments and using the Hardware
Configuration GUI to configure the hardware device.

• Supplying a configuration file as an input argument to softscope. Refer to
“Saving and Loading the Oscilloscope Configuration” on page 9-25 for more
information.

Display panel Channel scaling panel Trigger panel

Opening the Oscilloscope
Hardware Configuration
If you type softscope without supplying an analog input object,

softscope

the Hardware Configuration GUI is opened, which allows you to select the
hardware device to be used with the Oscilloscope.

The GUI shown below is configured to display the first two hardware channels
of the mcc Demo-Board in the Oscilloscope. The channels are sampled at a rate
of 5000 Hz and use the default input range. After you click the OK button, the
Oscilloscope opens.

You can also open the Hardware Configuration GUI by selecting the
Edit->Hardware menu item. You might want to do this to reconfigure an
existing hardware device, or to select a new hardware device. Additionally you
can change the sampling rate of the added channels with the New Sample Rate
GUI, which is shown below. You open this GUI by selecting the Edit->Sample
Rate menu item.

Display only the first
two channels.

Set the sampling rate
to 5000 Hz.

Click the OK button to open
the Oscilloscope.

mcc
9-3

9 softscope: The Data Acquisition Oscilloscope

9-4
Displaying Channels
Click the Trigger button to begin streaming data into the display. The data
from each channel defines a unique trace (line). To quickly scale the data,
right-click the display and select Autoscale from the menu.

The display area contains this information:

• Labels and markers for each trace. For this example, the traces are labeled
CH0 and CH1.

• Labels for the vertical units for each trace, and a label for the horizontal
units for the display.

When the acquisition is not running, you can display data tips by moving the
mouse cursor over the trace. The data tip is indicated by a red circle, and
displays the value of the trace at the selected point. If you press the Control key
while the cursor is over the trace, the difference between the first data tip and
the last data tip is displayed.

Click the Trigger button to begin
streaming data into the display.

Display data tips by placing the
mouse cursor over the trace.

Displaying Channels
Creating Additional Displays
To add additional displays to the Oscilloscope, use the Scope pane of the Scope
Editor GUI. To open this GUI, select Scope from the Edit menu. As shown
below, the new display is named display2.

To show a trace in a particular display, use the Channel Display pane of the
Channel Editor GUI. To open this GUI, select Channel from the Edit menu.
As shown below, CH0 is associated with the new display.

Click the Add button to include
the new display in the table.

Specify a unique display label.

Click the OK or Apply button to include
the new display in the Oscilloscope.

Associate the new display
with CH0.

Click the OK or Apply button
to update the Oscilloscope.
9-5

9 softscope: The Data Acquisition Oscilloscope

9-6
The Oscilloscope is now configured so that the CH0 trace is shown in the
bottom display, and the CH1 trace is shown in the top display.

Configuring Display Properties
You can change the display characteristics of the Oscilloscope by configuring
display properties. You access the display properties these two ways:

• Property Inspector — Place the mouse cursor in the display of interest,
right-click, and select Edit Properties from the menu.

• Scope Editor GUI — Select Scope from the Edit menu, and then choose the
Scope Properties pane.

For this example, use the Scope Editor GUI to change the color of both displays
to white. The steps are

1 Select both displays from the Select the scope components list.

2 Open the color picker for the Color property.

3 Select White from the color picker pop-up menu.

Displaying Channels
The Scope Properties pane and color picker are shown below. For descriptions
of all display properties, click the Help button.

Math and Reference Channels
In addition to hardware channels, you can display

• Reference channels — The data associated with a reference channel is
defined from a MATLAB variable or expression. You should use reference
channel data as a known waveform against which other data is compared.

• Math channels — The data associated with a math channel is calculated in
MATLAB using the data from existing hardware channels, math channels,
or reference channels.

You use the Channel pane of the Channel Editor GUI to create math and
reference channels. You open this GUI by selecting the Edit->Channel menu
item. For example, suppose you want to create a reference waveform to
compare to the CH0 waveform. The first step is to create the reference data in
MATLAB:

t = 0:0.0001:0.2;
w = 200*2*pi;
ref = 3.75*sin(w*t);

Select both displays.

Open the color picker and select
White from the pop-up menu.

Click Help to view property descriptions.
9-7

9 softscope: The Data Acquisition Oscilloscope

9-8
The next step is to define the reference channel in the Channel Editor GUI. The
Channel pane shown below is configured to create a reference channel called
r1 using the data defined in the variable ref, and to display the reference
channel data with CH0 in display2.

Note that instead of creating the variable ref in the workspace, you can specify
the expression 3.75*sin(w*t) in the Expression field.

Defining a math channel is similar to defining a reference channel. The main
difference is in specifying the expression. For a reference channel, you specify
a MATLAB variable or expression. For a math channel, you specify

• The channel name — Channel names are given by the Name column in the
Defined channels table.

• A valid MATLAB expression — When the expression is evaluated, the
channel names are replaced with the associated data that is currently being
displayed.

Display the reference data with CH0.

Define a reference channel named
r1 using the data from ref.

Click the Add button to include
the new channel in the table.

Click the OK or Apply button to create
the reference channel.

Displaying Channels
The Channel pane shown below is configured to create a math channel called
m1 using the CH0 and CH1 data, and to display the math channel data with
CH1 in display1.

The traces for the hardware, math, and reference channels are shown below.

Display the math channel data with CH1.

Define a math channel named m1
using the data from CH0 and CH1.

Click the Add button to include
the new channel in the table.

Click the OK or Apply button to create
the math channel.
9-9

9 softscope: The Data Acquisition Oscilloscope

9-1
Removing Channel Displays
You can remove a channel from a display one of these ways:

• Channel Editor GUI

- The Channel pane — Clear the associated check box in the first column of
the Defined channels table.

- The Channel Display pane — Select <not displayed> from the Display
column of the table.

• The On/Off button of the Channel Scaling panel. Refer to “Scaling the
Channel Data” on page 9-11 for more information about this panel.

The Channel pane is shown below with the math and reference channels
cleared from the Oscilloscope displays.

Note that if you clear the check boxes, then in addition to the channels not
being displayed:

• For hardware channels, data is not streamed into the Oscilloscope.

• For math and reference channels, the values are not calculated.

Clear the math and reference
channels from the Oscilloscope.
0

Scaling the Channel Data
Scaling the Channel Data
You can scale the defined channels using the Channel Scaling panel. In
particular, you can modify

• The horizontal scaling and offset for all display components.

• The vertical scaling and offset for one or more channels. To simultaneously
modify the vertical scaling for multiple channels, select the desired channel
names in the list box.

Additionally, using the On/Off button, you can add or remove the selected
traces from the Oscilloscope.

As shown below, the horizontal scale is changed to approximately 5 ms/div, and
the vertical scale is modified to maximize the trace amplitudes. Note that the
horizontal and vertical scaling information is shown at the bottom of each
display component.

To specify a precise horizontal scale or offset, you modify the associated display
properties. To specify a precise vertical scale or offset, you modify the
associated channel properties. You can access these properties using the Scope
Editor and the Channel Editor, respectively. You open these editors with the
Edit menu or a right-click menu. Note that all displays use the same horizontal
offset and scale.

Turn this Scale knob until
the displays accommodate
about 50 ms of data.

Turn this Scale knob until
the trace amplitudes are
maximized in each display.
9-11

9 softscope: The Data Acquisition Oscilloscope

9-1
Configuring Channel Properties
There are two sets of properties associated with the Channel Scaling panel:

• Channel panel properties — Properties associated with the controls and
labels that make up the panel

• Channel properties — Properties associated with the hardware, math, and
reference channels that are listed in the panel

For descriptions of all channel properties, click the Help button of the
appropriate GUI editor.

Channel Panel Properties
You can change the characteristics of the controls and labels that make up the
panel with the Scope Editor GUI. To open this GUI, select Scope from the Edit
menu, choose the Scope Properties pane, and select Channel Scaling from
the Select scope components list box. The Scope Properties pane is shown
below.

Select Channel Scaling.

Click Help to view property descriptions.
2

Scaling the Channel Data
Channel Properties
You can change the characteristics of the hardware, math, and reference
channels that are listed in the panel by configuring their channel properties.
You can access the channel properties these two ways:

• Property Inspector — Place the mouse cursor in the Channel Scaling panel,
right-click, and select Edit Properties from the menu.

• Channel Editor GUI — Select Channel from the Edit menu, and then choose
the Channel Properties pane.

For this example, use the Channel Editor GUI to modify the marker
characteristics for both CH0 and CH1. The steps are

1 Select both hardware channels from the Select the channels list box.

2 Specify a circular symbol for the Marker property, and specify an interval of
4 for the MarkerInterval property.

The Channel Properties pane is shown below.

Select both channels.

Specify a marker interval of 4.

Click Help to view property descriptions.

Specify a circular marker symbol.
9-13

9 softscope: The Data Acquisition Oscilloscope

9-1
Triggering the Oscilloscope
To display acquired data in the Oscilloscope, you must click the Trigger
button. You control how the data acquisition is initiated by specifying the
acquisition type and the trigger type in the Trigger panel.

Acquisition Types
The Oscilloscope supports three acquisition types, which you select from the
Acquire menu:

• One Shot — Acquire the specified number of samples once.

• Continuous — Continuously acquire the specified number of samples.

• Sequence — Continuously acquire the specified number of samples, and use
the dependent trigger type each time.

For each acquisition type, you can either fill the display with data or you can
acquire a specific number of samples. Additionally, the specified trigger type
(see below) determines how the acquisition is initiated.

Trigger Types
The Oscilloscope supports two trigger types, which you select from the Type
menu:

• Dependent — Data acquisition depends on the data. You define this
dependency by specifying the hardware channel, trigger condition, trigger
condition value, and whether pretrigger data is acquired.

Note that you can specify a dependent trigger for only one channel at a time,
and this channel initiates data acquisition for all other channels defined for
the Oscilloscope.

• Independent — Data acquisition starts immediately after you press the
Trigger button, and is independent of the data. Note that the Sequence
acquisition does not support this trigger type.
4

Triggering the Oscilloscope
The Oscilloscope shown below is configured for a one-shot acquisition of 1000
samples for CH0 and CH1. The acquisition is dependent on the data, and is
initiated when a rising signal level of -3.3 volts is detected on CH0.
Additionally, the first 0.02 second of data is defined as pretrigger data.

When you use a dependent trigger type, the display associated with the
selected channel contains these two indicators:

• The trigger level on the vertical axis.

• The location of the start of the trigger on the horizontal axis. The start of the
trigger corresponds to the first acquired sample at time zero. As shown by
the data tips for CH1, data to the left of the indicator is defined as pretrigger
data and has negative time values.

Note that you can change the indicator locations graphically by placing the
mouse cursor over the indicator and sliding it to the desired location.

Configure a one-shot
dependent trigger.

Trigger level
indicator

Pretrigger data
indicator
9-15

9 softscope: The Data Acquisition Oscilloscope

9-1
Configuring Trigger Properties
You can change the characteristics of the labels associated with the Triggers
panel with the Scope Editor GUI. To open this GUI, select Scope from the Edit
menu, choose the Scope Properties pane, and select Triggers from the Select
the scope components list box. The Scope Properties pane is shown below.

Select Triggers.

Click Help to view property descriptions.
6

Making Measurements
Making Measurements
You can make measurements on the acquired data with the Measurements
panel. The Oscilloscope provides many predefined measurement types such as
horizontal and vertical cursors, and basic math calculations such as the mean
and standard deviation. Additionally, you can define new measurement types
that suit your specific needs.

As shown below, you can list the predefined measurement types and create a
new measurement type with the Measurement Type pane of the
Measurement Editor GUI.

Predefined measurements.

Define a new measurement.
9-17

9 softscope: The Data Acquisition Oscilloscope

9-1
Defining a Measurement
Measurements that you define for the Oscilloscope are displayed in the
Measurements panel. By default, this panel is not included as part of the
Oscilloscope. To create the panel, you define one or more initial measurements.
There are two ways to do this:

• Right-click in the Channel Scaling panel and select Add Measurement
from the menu.

• Use the Measurement Editor GUI, which you open by selecting the
Edit->Measurement menu item.

Alternatively, you can create an empty Measurements panel by selecting the
Measurement check box in the Scope pane of the Scope Editor.

The Measurement pane shown below is configured to add a vertical cursor
measurement for CH0 to the Oscilloscope. Note that the peak-to-peak
measurement is already defined for CH0.

Click Add to add the
measurement to the table.

Select the channel and
the measurement type.

Click OK or Apply to add the
measurement to the Oscilloscope.
8

Making Measurements
After you click the OK or Apply button of the Measurement Editor, the
Measurements panel is automatically added to the Oscilloscope. You can then
click the Add Measurement button to define additional measurements.

Defining a New Measurement Type
You define a new measurement type by defining a MATLAB function that
takes an array of data as input and returns a scalar value. You can define a new
measurement type these two ways:

• If the Measurements panel is displayed, select New from the Type menu.

• Use the Measurement Type pane of the Measurement Editor.

To add a new measurement to the
panel, click Add Measurement.

The vertical cursor.
9-19

9 softscope: The Data Acquisition Oscilloscope

9-2
As shown below, a new measurement type that calculates the median is
defined via the Measurements panel. The resulting measurement is the
median value of the CH0 data.

Configuring Measurement Properties
There are two sets of properties associated with measurements:

• Measurement panel properties — Properties associated with the panel label

• Measurement properties — Properties associated with the measurements
that are listed in the panel

For descriptions of all measurement properties, click the Help button of the
Scope Properties pane or the Measurement Properties pane.

Select New from the Type menu.

The new measurement type
calculates the median value.
0

Making Measurements
Measurement Panel Properties
You can change the characteristics of the panel label with the Scope Editor
GUI. To open this GUI, select Scope from the Edit menu, choose the Scope
Properties pane, and select Measurements from the Select the scope
components list box. The Scope Properties pane is shown below.

Measurement Properties
You can configure measurement properties with the Measurement Properties
editor. You can open this editor two ways:

• Right-click menu — Place the mouse cursor in the Measurements pane of
interest, right-click, and select Edit Properties from the menu.

• Measurement Editor GUI — Select Measurement from the Edit menu, and
then choose the Measurement Properties pane.

For this example, use the Measurement Editor GUI to change the number of
measurements stored for CH1 to be identical to the number of samples
acquired for each trigger. The steps are

1 Select CH0 - Pk2Pk in the Select the measurements list box.

2 Edit the BufferSize property to be 1000.

Select Measurements.
9-21

9 softscope: The Data Acquisition Oscilloscope

9-2
The Measurement Properties pane is shown below.

Store 1000 measurements.

Select the CH0 peak-to-peak
measurement.
2

Exporting Data
Exporting Data
You can export this information to the MATLAB workspace, a figure, or a
MAT-file:

• Channel data — Data associated with a hardware channel, a math channel,
or a reference channel.

• Measurements — Data associated with a defined measurement. Note that
some measurements such as the horizontal and the vertical cursor have no
data to save.

Channels
You export channel data with the Channel Exporter GUI, which you open by
selecting the File->Export->Channels menu item.

The GUI shown below is configured to export 1000 samples for both hardware
channels to the workspace as a structure, which contains horizontal and
vertical scaling information. The variable name for the CH0 data is c0 and the
variable name for the CH1 data is c1.

Save the channel data and scaling
information as a structure.

Save the most recent 1000 samples.

Save the data for both channels to
the variable names c0 and c1.
9-23

9 softscope: The Data Acquisition Oscilloscope

9-2
The saved structure is shown below, where t0 is the time of the first stored
sample. Note that the time is negative because pretrigger data was acquired.

c0

c0 =
 horizontalScale: 0.0050
 horizontalOffset: 0
 verticalScale: 2.5730
 verticalOffset: 0
 data: [1000x1 double]
 t0: -0.0200
 samplerate: 5000

Measurements
You export measurement data with the Measurement Exporter GUI, which
you open by selecting the File->Export->Measurement menu item.

The GUI shown below is configured to export the peak-to-peak and absolute
value measurements for CH0 to the workspace. The maximum number of
measurements exported depends on the BufferSize property value for each
measurement type. The variable name for the peak-to-peak measurement is m0
and the variable name for the absolute value measurement is m1.

Save the measurement
data to the workspace.

Save the data for both measurements
to the variable names m0 and m1.
4

Saving and Loading the Oscilloscope Configuration
Saving and Loading the Oscilloscope Configuration
You can save the Oscilloscope configuration to a softscope file. Softscope files
are text-based files that contain this information:

• The hardware configuration

• The property values

• The screen position

You create a softscope file by selecting Save or Save As from the File menu.
The Save Softscope dialog box is shown below.

To load a softscope file into the Oscilloscope, provide the file name as an
argument to the softscope function.

softscope('mcc.si')
9-25

9 softscope: The Data Acquisition Oscilloscope

9-2
6

10
Function Reference

This chapter describes the toolbox M-file functions that you use directly. Note that a number of other
M-file helper functions are provided with this toolbox to support the functions listed below. These
helper functions are not documented because they are not intended for direct use. The sections are as
follows.

Functions — Categorical
List (p. 10-2)

Contains a series of tables that group functions by category

Functions — Alphabetical
List (p. 10-8)

Lists all the functions alphabetically

10 Function Reference

10-
Functions — Categorical List
This section contains brief descriptions of all toolbox functions. The functions
and the device objects they are associated with are categorized according to
usage as shown below. The supported device objects include analog input (AI),
analog output (AO), and digital I/O (DIO).

• Creating Device Objects (p. 10-3)

• Adding Channels and Lines (p. 10-3)

• Getting and Setting Properties (p. 10-4)

• Executing the Object (p. 10-4)

• Working with Data (p. 10-4)

• Getting Information and Help (p. 10-5)

• General Purpose (p. 10-5)

A number of other MATLAB M-file helper functions are provided with this
toolbox to support the functions listed below. These helper functions are not
documented because they are not intended for direct use.

Getting Command Line Function Help
To get command line function help, you should use the daqhelp function. For
example, to get help for the addchannel function, type

daqhelp addchannel

Alternatively, you can use the help command.

help addchannel

However, the Data Acquisition Toolbox provides “overloaded” versions of
several MATLAB functions. That is, it provides toolbox-specific
implementations of these functions using the same function name. To get
command line help for an overloaded toolbox function using the help command,
you must supply one of two possible class directories to help.

help daqdevice/function_name
help daqchild/function_name

Note that the same help information is returned regardless of the class
directory specified.
2

Functions — Categorical List
For example, the Data Acquisition Toolbox provides an overloaded version of
the delete function. To obtain help for the MATLAB version of this function,
type

help delete

You can determine if a function is overloaded by examining the last section of
the help. For delete, the help contains the following overloaded versions (not
all are shown).

Overloaded methods
help char/delete.m
help scribehandle/delete.m
help daqdevice/delete.m
help daqchild/delete.m

So, to obtain help on the toolbox version of this function, type

help daqdevice/delete

For more information on overloaded functions and class directories, refer to
“MATLAB Classes and Objects” in the Help browser.

Creating Device Objects

Adding Channels and Lines

Function Purpose AI AO DIO

analoginput Create an analog input object. √

analogoutput Create an analog output object. √

digitalio Create a digital I/O object. √

Function Purpose AI AO DIO

addchannel Add hardware channels to an analog input or analog
output object.

√ √
10-3

10 Function Reference

10-
Getting and Setting Properties

Executing the Object

Working with Data

addline Add hardware lines to a digital I/O object. √

addmuxchannel Add hardware channels when using a multiplexer board
(National Instruments only).

√

Function Purpose AI AO DIO

Function Purpose AI AO DIO

get Return device object properties. √ √ √

set Configure or display device object properties. √ √ √

setverify Configure and return the specified property. √ √ √

Function Purpose AI AO DIO

start Start a device object. √ √ √

stop Stop a device object. √ √ √

trigger Manually execute a trigger. √ √

waittilstop Wait for the device object to stop running. √ √

Function Purpose AI AO DIO

flushdata Remove data from the data acquisition engine. √

getdata Extract data, time, and event information from the data
acquisition engine.

√

4

Functions — Categorical List
Getting Information and Help

General Purpose

getsample Immediately acquire one sample. √

getvalue Read values from lines. √

peekdata Preview most recent acquired data. √

putdata Queue data in the engine for eventual output. √

putsample Immediately output one sample. √

putvalue Write values to lines. √

Function Purpose AI AO DIO

Function Purpose AI AO DIO

daqhelp Display help for device objects, constructors, adaptors,
functions, and properties.

√ √ √

daqhwinfo Display data acquisition hardware information. √ √ √

daqpropedit Invoke the property editor graphical user interface. √ √ √

propinfo Return property characteristics for device objects,
channels, or lines.

√ √ √

Function Purpose AI AO DIO

binvec2dec Convert binary vector to decimal value. √

clear Remove device objects from the MATLAB workspace. √ √ √

daqcallback A callback function that displays event information for
the specified event.

√ √ √

daqfind Return device objects, channels, or lines from the data
acquisition engine to the MATLAB workspace.

√ √ √
10-5

10 Function Reference

10-
daqmem Allocate or display memory resources. √ √

daqread Read a Data Acquisition Toolbox (.daq) file. √

daqschool Interface for displaying toolbox tutorials. √ √ √

daqregister Register or unregister a hardware driver adaptor. √ √ √

daqreset Remove device objects and data acquisition DLLs from
memory.

√ √ √

dec2binvec Convert decimal value to binary vector. √

delete Remove device objects, channels, or lines from the data
acquisition engine.

√ √ √

disp Display summary information for device objects,
channels, or lines.

√ √ √

ischannel Check for channels. √ √ √

isdioline Check for lines. √ √ √

isvalid Determine if device objects, channels, or lines are valid. √ √ √

length Return the length of a device object, channel group, or
line group.

√ √ √

load Load device objects, channels, or lines into the MATLAB
workspace.

√ √ √

makenames Generate a list of descriptive channel or line names. √ √ √

muxchanidx Return multiplexed scanned channel index (National
Instruments only).

√

obj2mfile Convert device objects, channels, or lines to MATLAB
code.

√ √ √

save Save device objects to a MAT-file. √ √ √

Function Purpose AI AO DIO
6

Functions — Categorical List
showdaqevents Display event log information. √ √

size Return the size of a device object, channel group, or line
group.

√ √ √

Function Purpose AI AO DIO
10-7

10 Function Reference

10-
Functions — Alphabetical List
This section contains detailed descriptions of all toolbox functions. Each
function reference page contains some or all of this information:

• The function name

• The purpose of the function

• The function syntax

All valid input argument and output argument combinations are shown. In
some cases, an ellipsis (. . .) is used for the input arguments. This means that
all preceding input argument combinations are valid for the specified output
argument(s).

• A description of each argument

• A description of the function

• Additional remarks about usage

• An example of usage

• Related functions or properties
8

addchannel
10addchannelPurpose Add hardware channels to an analog input or analog output object

Syntax chans = addchannel(obj,hwch)
chans = addchannel(obj,hwch,index)
chans = addchannel(obj,hwch,'names')
chans = addchannel(obj,hwch,index,'names')

Arguments

Description chans = addchannel(obj,hwch) adds the hardware channels specified by
hwch to the device object obj. The MATLAB indices associated with the added
channels are assigned automatically. chans is a column vector of channels.

chans = addchannel(obj,hwch,index) adds the hardware channels specified
by hwch to the device object obj. index specifies the MATLAB indices to
associate with the added channels.

chans = addchannel(obj,hwch,'names') adds the hardware channels
specified by hwch to the device object obj. The MATLAB indices associated with
the added channels are assigned automatically. names is a descriptive channel
name or cell array of descriptive channel names.

chans = addchannel(obj,hwch,index,'names') adds the hardware channels
specified by hwch to the device object obj. index specifies the MATLAB indices
to associate with the added channels. names is a descriptive channel name or
cell array of descriptive channel names.

obj An analog input or analog output object.

hwch Specifies the numeric IDs of the hardware channels added to
the device object. Any MATLAB vector syntax can be used.

index The MATLAB indices to associate with the hardware
channels. Any MATLAB vector syntax can be used provided
the vector elements are monotonically increasing.

'names' A descriptive channel name or cell array of descriptive
channel names.

chans A column vector of channels with the same length as hwch.
10-9

addchannel
Remarks Rules for Adding Channels

• The numeric values you supply for hwch depend on the hardware you access.
For National Instruments and Measurement Computing hardware,
channels are “zero-based” (begin at zero). For Agilent Technologies hardware
and sound cards, channels are “one-based” (begin at one).

• Hardware channel IDs are stored in the HwChannel property and the
associated MATLAB indices are stored in the Index property.

• You can add individual hardware channels to multiple device objects.

• For for sound cards and Agilent Technologies devices, you cannot add a
hardware channel multiple times to the same device object.

• For Agilent Technologies devices, added channels must be in increasing
order.

• You can configure sound cards in one of two ways: mono mode or stereo mode.
For mono mode, hwch must be 1. For stereo mode, the first hwch value
specified must be 1.

Note If you are using National Instruments AMUX-64T multiplexer boards,
you must use the addmuxchannel function to add channels.

More About MATLAB Indices
Every hardware channel contained by a device object has an associated
MATLAB index that is used to reference the channel. Index assignments are
made either automatically by addchannel or explicitly with the index
argument and follow these rules:

• If index is not specified and no hardware channels are contained by the
device object, then the assigned indices automatically start at one and
increase monotonically. If hardware channels have already been added to
the device object, then the assigned indices automatically start at the next
highest index value and increase monotonically.

• If index is specified but the indices are previously assigned, then the
requested assignment takes precedence and the previous assignment is
reindexed to the next available values. If the lengths of hwch and index are
10-10

addchannel
not equal, then an error is returned and no channels are added to the device
object.

• The resulting indices begin at one and increase monotonically up to the size
of the channel group.

• If you are using scanning hardware, then the indices define the scan order.

• Sound cards cannot be reindexed.

Rules for Adding Channels to National Instruments 1200 Series Boards
When using National Instruments 1200 Series hardware, you need to modify
the above rules in these ways:

• Channel IDs are given in reverse order with addchannel. For example, to add
eight single-ended channels to the analog input object ai:

addchannel(ai,7:-1:0);

• The scan order is from the highest ID to the lowest ID (which must be 0).

• There cannot be any gaps in the channel group.

• When channels are configured in differential mode, the hardware IDs are 0,
2, 4, and 6.

More About Descriptive Channel Names
You can assign hardware channels descriptive names, which are stored in the
ChannelName property. Choosing a unique descriptive name can be a useful
way to identify and reference channels. For a single call to addchannel, you can

• Specify one channel name that applies to all channels that are to be added

• Specify a different name for each channel to be added

If the number of names specified in a single addchannel call is more than one
but not equal to the number of channels to be added, then an error is returned.
If a channel is to be referenced by its name, then that name must not contain
symbols. If you are naming a large number of channels, then the makenames
function might be useful. If a channel is not assigned a descriptive name, then
it must be referenced by index.

A sound card configured in mono mode is automatically assigned the name
Mono, while a sound card configured in stereo mode is automatically assigned
the names Left for the first channel and Right for the second channel. You can
10-11

addchannel
change these default channel names when the device object is created, or any
time after the channel is added.

Example National Instruments
Suppose you create the analog input object AI1 for a National Instruments
board, and add the first four hardware channels (channels 0-3) to it.

AI1 = analoginput('nidaq',1);
addchannel(AI1,0:3);

The channels are automatically assigned the indices 1-4. If you want to add the
first four hardware channels to AI1 and assign descriptive names to the
channels,

addchannel(AI1,0:3,{'chan1','chan2','chan3','chan4'});

Note that you can use the makenames function to create a cell array of channel
names. If you add channels 4, 5, and 7 to the existing channel group,

addchannel(AI1,[4 5 7]);

the new channels are automatically assigned the indices 5-7. Suppose instead
you add channels 4, 5, and 7 to the channel group and explicitly assign them
indices 1-3.

addchannel(AI1,[4 5 7],1:3);

The new channels are assigned the indices 1-3, and the previously defined
channels are reindexed as indices 4-7. However, if you assigned channels 4, 5,
and 7 to indices 6-8, an error is returned because there is a gap in the indices
(index 5 has no associated hardware channel).
10-12

addchannel
Sound Card
Suppose you create the analog input object AI1 for a sound card. Most sound
cards have only two channels that can be added to a device object. To configure
the sound card to operate in mono mode, you must specify hwch as 1.

AI1 = analoginput('winsound');
addchannel(AI1,1);

The ChannelName property is automatically assigned the value Mono. You can
now configure the sound card to operate in stereo mode by adding the second
channel.

addchannel(AI1,2);

The ChannelName property is assigned the values Left and Right for the two
hardware channels. Alternatively, you can configure the sound card to operate
in stereo mode with one call to addchannel.

addchannel(AI1,1:2);

See Also Functions
delete, makenames

Properties
ChannelName, HwChannel, Index
10-13

addline
10addlinePurpose Add hardware lines to a digital I/O object

Syntax lines = addline(obj,hwline,'direction')
lines = addline(obj,hwline,port,'direction')
lines = addline(obj,hwline,'direction','names')
lines = addline(obj,hwline,port,'direction','names')

Arguments

Description lines = addline(obj,hwline,'direction') adds the hardware lines
specified by hwline to the digital I/O object obj. direction configures the lines
for either input or output. lines is a row vector of lines.

lines = addline(obj,hwline,port,'direction') adds the hardware lines
specified by hwline from the port specified by port to the digital I/O object obj.

lines = addline(obj,hwline,'direction','names') adds the hardware
lines specified by hwline to the digital I/O object obj. names is a descriptive line
name or cell array of descriptive line names.

lines = addline(obj,hwline,port,'direction','names') adds the
hardware lines specified by hwline from the port specified by port to the digital
I/O object obj. direction configures the lines for either input or output. names
is a descriptive line name or cell array of descriptive line names.

obj A digital I/O object.

hwline The numeric IDs of the hardware lines added to the device
object. Any MATLAB vector syntax can be used.

'direction' The line directions can be In or Out, and can be specified as a
single value or a cell array of values.

port The numeric IDs of the digital I/O port.

'names' A descriptive line name or cell array of descriptive line
names.

lines A row vector of lines with the same length as hwline.
10-14

addline
Remarks Rules for Adding Lines

• The numeric values you supply for hwline depend on the hardware you
access. For National Instruments and Measurement Computing hardware,
line IDs are “zero-based” (begin at zero).

• You can add a line only once to a given digital I/O object.

• Hardware line IDs are stored in the HwLine property and the associated
MATLAB indices are stored in the Index property.

• For a single call to addline, you can add multiple lines from one port or the
same line ID from multiple ports. You cannot add multiple lines from
multiple ports.

• If a port ID is not explicitly referenced, lines are added first from port 0, then
from port 1, and so on.

• You can specify the line directions as a single value or a cell array of values.
If a single direction is specified, then all added lines have that direction. If
supported by the hardware, you can configure individual lines by supplying
a cell array of directions.

More About MATLAB Indices
Every hardware line contained by a device object has an associated MATLAB
index that is used to reference the line. Index assignments are made
automatically by addline and follow these rules:

• If no hardware lines are contained by the device object, then the assigned
indices automatically start at one and increase monotonically. If hardware
lines have already been added to the device object, then the assigned indices
automatically start at the next highest index value and increase
monotonically.

• The resulting indices begin at one and increase monotonically up to the size
of the line group.

• The first indexed line represents the least significant bit (LSB) and the
highest indexed line represents the most significant bit (MSB).
10-15

addline
More About Descriptive Line Names
You can assign hardware lines descriptive names, which are stored in the
LineName property. Choosing a unique descriptive name can be a useful way to
identify and reference lines. For a single call to addline, you can

• Specify one line name that applies to all lines that are to be added

• Specify a different name for each line to be added

If the number of names specified in a single addline call is more than one but
differs from the number of lines to be added, then an error is returned. If a line
is to be referenced by its name, then that name must not contain symbols. If
you are naming a large number of lines, then the makenames function might be
useful. If a line is not assigned a descriptive name, then it must be referenced
by index.

Example Create the digital I/O object dio and add the first four hardware lines (line IDs
0-3) from port 0.

dio = digitalio('nidaq',1);
addline(dio,0:3,'in');

These lines are automatically assigned the indices 1-4. If you want to add the
first four hardware lines to dio and assign descriptive names to the lines,

addline(dio,0:3,'in',{'line1','line2','line3','line4'});

Note that you can use the makenames function to create a cell array of line
names. You can add the first four hardware lines (line IDs 0-3) from port 1 to
the existing line group.

addline(dio,0:3,1,'out');

The new lines are automatically assigned the indices 5-8.

See Also Functions
delete, makenames

Properties
HwLine, Index, LineName
10-16

addmuxchannel
10addmuxchannelPurpose Add hardware channels when using a multiplexer board

Syntax addmuxchannel(obj)
addmuxchannel(obj,chanids)
chans = addmuxchannel(...)

Arguments

Description addmuxchannel(obj) adds as many channels to obj as is physically possible
based on the number of National Instruments AMUX-64T multiplexer (mux)
boards specified by the NumMuxBoards property. For one mux board, 64
channels are added. For two mux boards, 128 channels are added. For four mux
boards, 256 channels are added.

addmuxchannel(obj,chanids) adds the channels specified by chanids to obj.
chanids refers to the hardware channel IDs of the data acquisition board.

The actual number of channels added to obj depends on the number of mux
boards used. For example, suppose you are using a data acquisition board with
16 channels connected to one mux board. If chanid is 0, then addmuxchannel
adds four channels. Refer to the AMUX-64T User Manual for more information
about adding mux channels based on hardware channel IDs and the number of
mux boards used.

chans = addmuxchannel(...) returns the channels added to chans.

Remarks Before using addmuxchannel, you must set the NumMuxBoards property to the
appropriate value. You can use as many as four mux boards with one analog
input object. addmuxchannel deletes all channels contained by obj before new
channels are added.

See Also Functions
muxchanidx

obj An analog input object associated with a National
Instruments board.

chanids The hardware channel IDs.

chans The channels that are added to obj.
10-17

analoginput
10analoginputPurpose Create an analog input object

Syntax AI = analoginput('adaptor')
AI = analoginput('adaptor',ID)

Arguments

Description AI = analoginput('adaptor') creates the analog input object AI for a sound
card having an ID of 0 (adaptor must be winsound). This is the only case where
ID is not required.

AI = analoginput('adaptor',ID) creates the analog input object AI for the
specified adaptor and for the hardware device with device identifier ID. ID can
be specified as an integer or a string.

Remarks More About Creating Analog Input Objects

• When an analog input object is created, it does not contain any hardware
channels. To execute the device object, hardware channels must be added
with the addchannel function.

• You can create multiple analog input objects that are associated with a
particular analog input subsystem. However, you can typically execute only
one object at a time.

• The analog input object exists in the data acquisition engine and in the
MATLAB workspace. If you create a copy of the device object, it references
the original device object in the engine.

• If ID is a numeric value, then you can specify it as an integer or a string. If
ID contains any nonnumeric characters, then you must specify it as a string
(see the Agilent Technologies example below).

'adaptor' The hardware driver adaptor name. The supported adaptors
are advantech, hpe1432, keithley, mcc, nidaq, and
winsound.

ID The hardware device identifier. ID is optional if the device
object is associated with a sound card having an ID of 0.

AI The analog input object.
10-18

analoginput
• The Name property is automatically assigned a descriptive name that is
produced by concatenating adaptor, ID, and -AI. You can change this name
at any time.

More About the Hardware Device Identifier
When data acquisition devices are installed, they are assigned a unique
number which identifies the device in software. The device identifier is
typically assigned automatically and can usually be manually changed using a
vendor-supplied device configuration utility. National Instruments refers to
this number as the device number while Agilent Technologies refers to it is as
the device ID.

For sound cards, the device identifier is typically not exposed to you through
the Microsoft Windows environment. However, the Data Acquisition Toolbox
automatically associates each sound card with an integer ID value. There are
two cases to consider:

• If you have one sound card installed, then ID is 0. You are not required to
specify ID when creating an analog input object associated with this device.

• If you have multiple sound cards installed, the first one installed has an ID
of 0, the second one installed has an ID of 1, and so on. You must specify ID
when creating analog input objects associated with devices not having an ID
of 0.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').

• Execute the vendor-supplied device configuration utility.

Example National Instruments
To create an analog input object for a National Instruments board defined as
device number 1:

AI = analoginput('nidaq',1);

Agilent Technologies
To create an analog input object for an Agilent Technologies module with
device identifier 1 residing in VXI chassis 0:

AI = analoginput('hpe1432','vxi0::1::instr');
10-19

analoginput
Alternatively, you can use the syntax

AI = analoginput('hpe1432',1,0);

The HP driver allows you to span multiple hardware devices. To create an
analog input object that spans two HP devices with device identifiers 1 and 2
residing in VXI chassis 0:

AI = analoginput('hpe1432','vxi0::1,2::instr');

Alternatively, you can use the syntax

AI = analoginput('hpe1432',[1,2],0);

See Also Functions
addchannel, daqhwinfo

Properties
Name
10-20

analogoutput
10analogoutputPurpose Create an analog output object

Syntax AO = analogoutput('adaptor')
AO = analogoutput('adaptor',ID)

Arguments

Description AO = analogoutput('adaptor') creates the analog output object AO for a
sound card having an ID of 0 (adaptor must be winsound). This is the only case
where ID is not required.

AO = analogoutput('adaptor',ID) creates the analog output object AO for
the specified adaptor and for the hardware device with device identifier ID. ID
can be specified as an integer or a string.

Remarks More About Creating Analog Output Objects

• When an analog output object is created, it does not contain any hardware
channels. To execute the device object, hardware channels must be added
with the addchannel function.

• You can create multiple analog output objects that are associated with a
particular analog output subsystem. However, you can typically execute only
one object at a time.

• The analog output object exists in the data acquisition engine and in the
MATLAB workspace. If you create a copy of the device object, it references
the original device object in the engine.

• If ID is a numeric value, then you can specify it as an integer or a string. If
ID contains any nonnumeric characters, then you must specify it as a string
(see the Agilent Technologies example below).

'adaptor' The hardware driver adaptor name. The supported adaptors
are advantech, hpe1432, keithley, mcc, nidaq, and
winsound.

ID The hardware device identifier. ID is optional if the device
object is associated with a sound card having an ID of 0.

AO The analog output object.
10-21

analogoutput
• The Name property is automatically assigned a descriptive name that is
produced by concatenating adaptor, ID, and -AO. You can change this name
at any time.

More About the Hardware Device Identifier
When data acquisition devices are installed, they are assigned a unique
number which identifies the device in software. The device identifier is
typically assigned automatically and can usually be manually changed using a
vendor-supplied device configuration utility. National Instruments refers to
this number as the device number while Agilent Technologies refers to it is as
the device ID.

For sound cards, the device identifier is typically not exposed to you through
the Microsoft Windows environment. However, the Data Acquisition Toolbox
automatically associates each sound card with an integer ID value. There are
two cases to consider:

• If you have one sound card installed, then ID is 0. You are not required to
specify ID when creating an analog output object associated with this device.

• If you have multiple sound cards installed, the first one installed has an ID
of 0, the second one installed has an ID of 1, and so on. You must specify ID
when creating analog output objects associated with devices not having an
ID of 0.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').

• Execute the vendor-supplied device configuration utility.

Example National Instruments
To create an analog output object for a National Instruments board defined as
device number 1:

AO = analogoutput('nidaq',1);

Agilent Technologies
To create an analog output object for an Agilent Technologies module with
device identifier 1 residing in VXI chassis 0:

AO = analogoutput('hpe1432','vxi0::1::instr');
10-22

analogoutput
Alternatively, you can use the syntax

AO = analogoutput('hpe1432',1,0);

The HP driver allows you to span multiple hardware devices. To create an
analog output object that spans two HP devices with device identifiers 1 and 2
residing in VXI chassis 0:

AO = analogoutput('hpe1432','vxi0::1,2::instr');

Alternatively, you can use the syntax

AO = analogoutput('hpe1432',[1,2],0);

See Also Functions
addchannel, daqhwinfo

Properties
Name
10-23

binvec2dec
10binvec2decPurpose Convert binary vector to decimal value

Syntax out = binvec2dec(bin)

Arguments

Description out = binvec2dec(bin) converts the binary vector bin to the equivalent
decimal number and stores the result in out. All nonzero binary vector
elements are interpreted as a 1.

Remarks A binary vector (binvec) is constructed with the least significant bit (LSB) in
the first column and the most significant bit (MSB) in the last column. For
example, the decimal number 23 is written as the binvec value [1 1 1 0 1].

Note The binary vector cannot exceed 52 values.

Example To convert the binvec value [1 1 1 0 1] to a decimal value:

binvec2dec([1 1 1 0 1])
ans =
 23

See Also Functions
dec2binvec

bin A binary vector.

out A double array.
10-24

clear
10clearPurpose Remove device objects from the MATLAB workspace

Syntax clear obj
clear obj.Channel(index)
clear obj.Line(index)

Arguments

Description clear obj removes obj and all associated channels or lines from the MATLAB
workspace, but not from the data acquisition engine.

clear obj.Channel(index) removes the specified channels contained by obj
from the MATLAB workspace, but not from the data acquisition engine.

clear obj.Line(index) removes the specified lines contained by obj from the
MATLAB workspace, but not from the data acquisition engine.

Remarks Clearing device objects, channels, and lines follows these rules:

• clear does not remove device objects, channels, or lines from the data
acquisition engine. Use the delete function for this purpose.

• If multiple references to a device object exist in the workspace, clearing one
reference will not invalidate the remaining references.

• You can restore cleared device objects to the MATLAB workspace with the
daqfind function.

If you use the help command to display the M-file help for clear, then you
must supply the pathname shown below.

help daq/private/clear

obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.
10-25

clear
Example Create the analog input object ai, copy ai to a new variable aicopy, and then
clear the original device object from the MATLAB workspace.

ai = analoginput('winsound');
ch = addchannel(ai,1:2);
aicopy = ai;
clear ai

Retrieve ai from the engine with daqfind, and demonstrate that ai is identical
to aicopy.

ainew = daqfind;
isequal(aicopy,ainew)
ans =
 1

See Also Functions
daqfind, delete
10-26

daqcallback
10daqcallbackPurpose A callback function that displays event information for the specified event

Syntax daqcallback(obj,event)

Arguments

Description daqcallback(obj,event) is an example callback function that displays
information to the MATLAB command window. For all events, the information
includes the event type and the name of the device object that caused the event
to occur. For events that record the absolute time in EventLog, the event time
is also displayed. For run-time error events, the error message is also
displayed.

Remarks You specify daqcallback as the callback function to be executed for any event
by specifying it as the value for the associated callback property. For analog
input objects, daqcallback is the default value for the DataMissedFcn and
RuntimeErrorFcn properties. For analog output objects, daqcallback is the
default value for the RuntimeErrorFcn property.

You can use the showdaqevents function to easily display event information
captured by the EventLog property.

Example Create the analog input object ai and call daqcallback when a trigger event
occurs.

ai = analoginput('winsound');
addchannel(ai,1);
set(ai,'TriggerRepeat',3)
set(ai,'TriggerFcn',@daqcallback)
start(ai)

See Also Functions
showdaqevents

Properties
DataMissedFcn, EventLog, RuntimeErrorFcn

obj A device object.

event A variable that captures the event information contained by
the EventLog property.
10-27

daqfind
10daqfindPurpose Return device objects, channels, or lines from the data acquisition engine to the
MATLAB workspace

Syntax out = daqfind
out = daqfind('PropertyName',PropertyValue,...)
out = daqfind(S)
out = daqfind(obj,'PropertyName',PropertyValue,...)

Arguments

Description out = daqfind returns all device objects that exist in the data acquisition
engine. The output out is an array.

out = daqfind('PropertyName',PropertyValue,...) returns all device
objects, channels, or lines that exist in the data acquisition engine and have the
specified property names and property values. The property name/property
value pairs can be specified as a cell array.

out = daqfind(S) returns all device objects, channels, or lines that exist in
the data acquisition and have the property names and property values
specified by S. S is a structure with field names that are property names and
field values that are property values.

out = daqfind(obj,'PropertyName',PropertyValue,...) returns all device
object, channels, or lines listed by obj that have the specified property names
and property values.

'PropertyName' A device object, channel, or line property name.

PropertyValue A device object, channel, or line property value.

obj A device object, array of device objects, channels, or lines.

S A structure with field names that are property names
and field values that are property values.

out An array or cell array of device objects, channels, or
lines.
10-28

daqfind
Remarks More About Finding Device Objects, Channels, or Lines
daqfind is particularly useful in these circumstances:

• A device object is cleared from the MATLAB workspace, and it needs to be
retrieved from the data acquisition engine.

• You need to locate device objects, channels, or lines that have particular
property names and property values.

Rules for Specifying Property Names and Property Values

• You can use property name/property value string pairs, structures, and cell
array pairs in the same call to daqfind. However, in a single call to daqfind,
you can specify only device object properties or channel/line properties.

• You must use the same format as returned by get. For example, if get
returns the ChannelName property value as Left, you must specify Left as
the property value in daqfind (case matters). However, case does not matter
when you specify enumerated property values. For example, daqfind will
find a device object with a Running property value of On or on.

Example You can use daqfind to return a cleared device object.

ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ch,{'ChannelName'},{'Joe';'Jack'})
clear ai
ainew = daqfind;

To return the channel associated with the descriptive name Jack:

ch2 = daqfind(ainew,'ChannelName','Jack');

To return the device object with a sampling rate of 8000 Hz and the descriptive
name winsound0-AI, you can pass a structure to daqfind.

S.Name = 'winsound0-AI';
S.SampleRate = 8000;
daqobj = daqfind(S);

See Also Functions
clear, get, propinfo
10-29

daqhelp
10daqhelpPurpose Display help for device objects, constructors, adaptors, functions, and
properties

Syntax daqhelp
out = daqhelp('name')
out = daqhelp(obj)
out = daqhelp(obj,'name')

Arguments

Description daqhelp displays a complete listing of Data Acquisition Toolbox constructors
and functions along with a brief description of each.

out = daqhelp('name') returns help for the device object, constructor,
adaptor, function, or property specified by name. The help text is returned to
out.

out = daqhelp(obj) returns a complete listing of functions and properties for
the device object obj to out. Help for obj's constructor is also displayed.

out = daqhelp(obj,'name') returns help for name for the specified device
object obj to out. name can be a constructor, adaptor, property, or function
name.

'name' A device object, constructor, adaptor, function, or property
name.

obj A device object.

out Contains the specified help text.
10-30

daqhelp
Remarks As shown below, you can also display help via the Workspace browser by
right-clicking a device object, and selecting Explore -> DAQ Help from the
context menu.

More About Displaying Help

• When displaying property help, the names in the See Also section that
contain all uppercase letters are function names. The names that contain a
mixture of upper- and lowercase letters are property names.

• When displaying function help, the See Also section contains only function
names.

Rules for Specifying Names
For the daqhelp('name') syntax:

• If name is the name of a constructor, a complete listing of the device object’s
functions and properties is displayed along with a brief description of each
function and property. The constructor help is also displayed.

• You can display object-specific function information by specifying name as
object/function. For example, to display the help for an analog input object's
getdata function, name is analoginput/getdata.

• You can display object-specific property information by specifying name as
obj.property. For example, to display the help for an analog input object's
SampleRate property, name is analoginput.SampleRate.

Access context (pop-up) menus
by right-clicking a device object.
10-31

daqhelp
For the daqhelp(obj,'name') syntax:

• If name is the name of a device object constructor and the .m extension is
included, the constructor help is displayed.

• If name is the name of a function or property, the function or property help is
displayed.

Example The following commands are some of the ways you can use daqhelp to obtain
help on device objects, constructors, adaptors, functions, and properties.

daqhelp('analogoutput');
out = daqhelp('analogoutput.m');
daqhelp set
daqhelp analoginput/peekdata
daqhelp analoginput.TriggerDelayUnits

The following commands are some of the ways you can use daqhelp to obtain
information about functions and properties for an existing device object.

ai = analoginput('winsound');
daqhelp(ai,'InitialTriggerTime')
out = daqhelp(ai,'getsample');

See Also Functions
propinfo
10-32

daqhwinfo
10daqhwinfoPurpose Display data acquisition hardware information

Syntax out = daqhwinfo
out = daqhwinfo('adaptor')
out = daqhwinfo(obj)
out = daqhwinfo(obj,'FieldName')

Arguments

Description out = daqhwinfo returns general hardware-related information as a structure
to out. The returned information includes installed adaptors, the toolbox and
MATLAB version, and the toolbox name.

out = daqhwinfo('adaptor') returns hardware-related information for the
specified adaptor. The returned information includes the adaptor DLL name,
the board names and IDs, and the device object constructor syntax.

out = daqhwinfo('adaptor','FieldName') returns the hardware-related
information specified by FieldName for adaptor. FieldName must be a single
string. out is a cell array. You can return a list of valid field names with the
daqhwinfo('adaptor') syntax.

out = daqhwinfo(obj) returns hardware-related information for the device
object obj. If obj is an array of device objects, then out is a 1-by-n cell array of
structures where n is the length of obj. The returned information depends on
the device object type, and might include the maximum and minimum
sampling rates, the channel gains, the hardware channel or line IDs, and the
vendor driver version.

'adaptor' The hardware driver adaptor name. The supported adaptors
are advantech, hpe1432, keithley, mcc, nidaq, parallel,
and winsound.

obj A device object or array of device objects.

'FieldName' A single field name or a cell array of field names.

out A structure containing the requested hardware information.
10-33

daqhwinfo
out = daqhwinfo(obj,'FieldName') returns the hardware-related
information specified by FieldName for the device object obj. FieldName can be
a single field name or a cell array of field names. out is an m-by-n cell array
where m is the length of obj and n is the length of FieldName. You can return
a list of valid field names with the daqhwinfo(obj) syntax.

Remarks As shown below, you can also return hardware information via the Workspace
browser by right-clicking a device object, and selecting Explore -> Display
Hardware Info from the context menu.

Example Display all installed adaptors. Note that this list might be different for your
platform.

out = daqhwinfo;
out.InstalledAdaptors

ans =
 'advantech'
 'hpe1432'
 'keithley'
 'mcc'
 'nidaq'
 'parallel'
 'winsound'

Access context (pop-up) menus
by right-clicking a device object.
10-34

daqhwinfo
To display the device object constructor names for all installed winsound
devices:

out = daqhwinfo('winsound');
out.ObjectConstructorName
ans =
 'analoginput('winsound',0)'
 'analogoutput('winsound',0)'

Create the analog input object ai for a sound card. To display the input ranges
for ai:

ai = analoginput('winsound');
out = daqhwinfo(ai);
out.InputRanges
ans =
 -1 1

To display the minimum and maximum sampling rates for ai:

out = daqhwinfo(ai,{'MinSampleRate','MaxSampleRate'})
out =
 [8000] [44100]
10-35

daqmem
10daqmemPurpose Allocate or display memory resources

Syntax out = daqmem
out = daqmem(obj)
daqmem(obj,maxmem)

Arguments

Description out = daqmem returns the structure out, which contains several fields
describing the memory resources associated with your platform and the Data
Acquisition Toolbox. The fields are described below.

obj A device object or array of device objects.

maxmem The amount of memory to allocate.

out A structure containing information about memory resources.

Field Description

MemoryLoad Specifies a number between 0 and 100 that gives a
general idea of current memory utilization. 0 indicates
no memory use and 100 indicates full memory use.

TotalPhys Indicates the total number of bytes of physical memory.

AvailPhys Indicates the number of bytes of physical memory
available.

TotalPageFile Indicates the total number of bytes that can be stored in
the paging file. Note that this number does not represent
the actual physical size of the paging file on disk.

AvailPageFile Indicates the number of bytes available in the paging
file.

TotalVirtual Indicates the total number of bytes that can be described
in the user mode portion of the virtual address space of
the calling process.
10-36

daqmem
Note that all the above fields, except for UsedDaq, are identical to the fields
returned by Windows’ MemoryStatus function.

out = daqmem(obj) returns a 1-by-N structure out containing two fields:
UsedBytes and MaxBytes for the device object obj. N is the number of device
objects specified by obj. UsedBytes returns the number of bytes used by obj.
MaxBytes returns the maximum number of bytes that can be used by obj.

daqmem(obj,maxmem) sets the maximum memory that can be allocated for obj
to the value specified by maxmem.

Remarks More About Allocating and Displaying Memory Resources

• For analog output objects, daqmem(obj,maxmem) controls the value of the
MaxSamplesQueued property.

• If you manually configure the BufferingConfig property, then this value
supersedes the values specified by daqmem(obj,maxmem) and the
MaxSamplesQueued property.

Example Create the analog input object aiwin for a sound card and the analog input
object aini for a National Instruments board, and add two channels to each
device object.

aiwin = analoginput('winsound');
addchannel(aiwin,1:2);
aini = analoginput('nidaq',1);
addchannel(aini,0:1);

AvailVirtual Indicates the number of bytes of unreserved and
uncommitted memory in the user mode portion of the
virtual address space of the calling process.

UsedDaq The total memory used by all device objects.

Field Description
10-37

daqmem
To display the total memory used by all existing device objects:

out = daqmem;
out.UsedDaq
ans =
 69120

To configure the maximum memory used by aiwin to 640 KB:

daqmem(aiwin,640000)

To configure the maximum memory used by each device object with one call to
daqmem:

daqmem([aiwin aini],[640000 480000])

See Also Properties
BufferingConfig, MaxSamplesQueued
10-38

daqpropedit
10daqpropeditPurpose Open the Data Acquisition Property Editor

Syntax daqpropedit
daqpropedit(obj)

Arguments

Description daqpropedit opens the Data Acquisition Property Editor. All existing device
objects are displayed in the editor.

daqpropedit(obj) opens the editor for the specified device object obj.

Remarks The Data Acquisition Property Editor is a graphical user interface (GUI) that
allows you to

• List all existing device objects as well as the channels or lines they contain.

• Configure property values.

• Display property characteristics.

• Display property help.

As shown below, you can also invoke the property editor via the Workspace
browser by right-clicking a device object, and selecting Explore -> Call
Property Editor from the context menu.

obj A device object.

Access context (pop-up) menus
by right-clicking a device object.
10-39

daqpropedit
Example Create the analog input object ai for a sound card and add two channels.

ai = analoginput('winsound');
addchannel(ai,1:2);

To configure property values for ai using daqpropedit:

daqpropedit(ai)

The Data Acquisition Property Editor is shown below.

See Also Functions
daqfind, daqhelp, get, propinfo, set

List of device objects, channels,
and lines

List of configurable properties
and their current values

Property characteristics

Property help

Property to configure and its
current value
10-40

daqread
10daqreadPurpose Read a Data Acquisition Toolbox (.daq) file

Syntax data = daqread('file')
data = daqread('file','PropertyName',PropertyValue,...)
[data,time] = daqread(...)
[data,time,abstime] = daqread(...)
[data,time,abstime,events] = daqread(...)
[data,time,abstime,events,daqinfo] = daqread(...)
daqinfo = daqread('file','info')

Arguments

Description data = daqread('file') reads all the data from file. data is an m-by-n data
matrix where m is the number of samples and n is the number of channels. If
data includes data from multiple triggers, then m is increased by the number
of triggers because of the addition of NaN’s.

'file' A Data Acquisition Toolbox (.daq) file.

'PropertyName' A daqread property name.

PropertyValue A daqread property value.

'info' Specifies that device object and hardware
information are to be returned.

data An m-by-n array where m is the number of samples
and n is the number of channels.

time An m-by-1 array of relative time values where m is
the number of samples.

abstime The absolute time of the first trigger.

events A structure containing event information.

daqinfo A structure containing device object and hardware
information.
10-41

daqread
data = daqread('file','PropertyName',PropertyValue,...) reads the
specified data from file. The amount of data returned and the format of the
data is specified with the properties shown below.

The Samples, Time, and Triggers properties are mutually exclusive.

[data,time] = daqread(...) returns sample-time pairs. time is a vector
with the same length as data and contains the relative time for each sample.
Relative time is measured with respect to the first trigger that occurs.

[data,time,abstime] = daqread(...) returns sample-time pairs and the
absolute time of the first trigger. abstime is returned as a clock vector.

[data,time,abstime,events] = daqread(...) returns sample-time pairs,
the absolute time of the first trigger, and a log of events. events contains the
appropriate events based on the Samples, Time, or Triggers value specified.
The entire event log is returned only if Samples, Time, or Triggers is not
specified.

[data,time,abstime,events,daqinfo] = daqread(...) returns
sample-time pairs, the absolute time, the event log, and the structure daqinfo,
which contains two fields: ObjInfo and HwInfo. ObjInfo is a structure
containing property name/property value pairs and HwInfo is a structure
containing hardware information. The entire event log is returned to
daqinfo.ObjInfo.EventLog.

Property Name Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be
specified as a cell array.

DataFormat Specify the data format as doubles or native.

TimeFormat Specify the time format as vector or matrix.
10-42

daqread
daqinfo = daqread('file','info') returns the structure daqinfo, which
contains two fields: ObjInfo and HwInfo. ObjInfo is a structure containing
property name/property value pairs and HwInfo is a structure containing
hardware information. The entire event log is returned to
daqinfo.ObjInfo.EventLog.

Remarks More About .daq Files

• The format used by daqread to return data, relative time, absolute time, and
event information is identical to the format used by the getdata function.

• If data from multiple triggers is read, then the size of the resulting data
array is increased by the number of triggers issued because each trigger is
separated by a NaN.

• ObjInfo.EventLog always contains the entire event log regardless of the
value specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device object
(ObjInfo) information.

• Data Acquisition Toolbox (.daq) files are created by specifying a value for the
LogFileName property (or accepting the default value), and configuring the
LoggingMode property to Disk or Disk&Memory.

Example Suppose you configure the analog input object ai for a National Instruments
board as shown below. The object acquires one second of data for four channels,
and saves the data to the output file data.daq.

ai = analoginput('nidaq',1);
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger',ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can retrieve the
data and other acquisition-related information using daqread. To read all the
sample-time pairs from data.daq:

[data,time] = daqread('data.daq');
10-43

daqread
To read samples 500 to 1000 for all channels from data.daq:

data = daqread('data.daq','Samples',[500 1000]);

To read the first 0.5 seconds of data for channels 1 and 2 from data.daq:

data = daqread('data.daq','Time',[0 0.5],'Channels',[1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

See Also Functions
getdata

Properties
EventLog, LogFileName, LoggingMode, LogToDiskMode
10-44

daqregister
10daqregisterPurpose Register or unregister a hardware driver adaptor

Syntax daqregister('adaptor')
daqregister('adaptor','unload')
out = daqregister(...)

Arguments

Description daqregister('adaptor') registers the hardware driver adaptor specified by
adaptor. For third-party adaptors, adaptor must include the full pathname.

daqregister('adaptor','unload) unregisters the hardware driver adaptor
specified by adaptor. For third-party adaptors, adaptor must include the full
pathname.

out = daqregister(...) captures the resulting message in out.

Remarks A hardware driver adaptor must be registered so the data acquisition engine
can make use of its services. Unless an adaptor is unloaded, registration is
required only once.

For adaptors that are included with the toolbox, registration occurs
automatically when you first create a device object. However, you might need
to register third-party adaptors manually. In either case, you must install the
associated hardware driver before registration can occur.

Example The following command registers the sound card adaptor provided with the
toolbox.

daqregister('winsound');

'adaptor' The hardware driver adaptor name. The supported adaptors
are advantech, hpe1432, keithley, mcc, nidaq, parallel,
and winsound.

'unload' Specifies that the hardware driver adaptor is to be unloaded.

out Captures the message returned by daqregister.
10-45

daqregister
The following command registers the third-party adaptor myadaptor.dll. Note
that you must supply the full pathname to daqregister.

daqregister('D:/MATLABR12/toolbox/daq/myadaptors/
myadaptor.dll');
10-46

daqreset
10daqresetPurpose Remove device objects and data acquisition DLLs from memory

Syntax daqreset

Description daqreset removes all device objects existing in the engine, and unloads all data
acquisition DLLs loaded by the engine (including the adaptor and engine DLL
files).

You should use daqreset to return MATLAB to the known initial state of
having no device objects and no data acquisition DLLs loaded in memory.
When MATLAB is returned to this state, the data acquisition hardware is
reset.

See Also Functions
clear, delete
10-47

dec2binvec
10dec2binvecPurpose Convert decimal value to binary vector

Syntax out = dec2binvec(dec)
out = dec2binvec(dec,bits)

Arguments

Description out = dec2binvec(dec) converts the decimal value dec to an equivalent
binary vector and stores the result as a logical array in out.

out = dec2binvec(dec,bits) converts the decimal value dec to an equivalent
binary vector consisting of at least the number of bits specified by bits.

Remarks More About Binary Vectors
A binary vector (binvec) is constructed with the least significant bit (LSB) in
the first column and the most significant bit (MSB) in the last column. For
example, the decimal number 23 is written as the binvec value [1 1 1 0 1].

More About Specifying the Number of Bits

• If bits is greater than the minimum number of bits required to represent the
decimal value, then the result is padded with zeros.

• If bits is less than the minimum number of bits required to represent the
decimal value, then the minimum number of required bits is used.

• If bits is not specified, then the minimum number of bits required to
represent the number is used.

Example To convert the decimal value 23 to a binvec value:

dec2binvec(23)
ans =
 1 1 1 0 1

dec A decimal value. dec must be nonnegative.

bits Number of bits used to represent the decimal number.

out A logical array containing the binary vector.
10-48

dec2binvec
To convert the decimal value 23 to a binvec value using six bits:

dec2binvec(23,6)
ans =
 1 1 1 0 1 0

To convert the decimal value 23 to a binvec value using four bits, then the
result uses five bits. This is the minimum number of bits required to represent
the number.

dec2binvec(23,4)
ans =
 1 1 1 0 1

See Also Functions
binvec2dec
10-49

delete
10deletePurpose Remove device objects, channels, or lines from the data acquisition engine

Syntax delete(obj)
delete(obj.Channel(index))
delete(obj.Line(index))

Arguments

Description delete(obj) removes the device object specified by obj from the engine. If obj
contains channels or lines, they are removed as well. If obj is the last object
accessing the driver, then the driver and associated adaptor are unloaded.

delete(obj.Channel(index)) removes the channels specified by index and
contained by obj from the engine. As a result, the remaining channels might
be reindexed.

delete(obj.Line(index)) removes the lines specified by index and contained
by obj from the engine. As a result, the remaining lines might be reindexed.

Remarks Deleting device objects, channels, and lines follows these rules:

• delete removes device objects, channels, or lines from the data acquisition
engine but not from the MATLAB workspace. To remove variables from the
workspace, use the clear function.

• If multiple references to a device object exist in the workspace, then
removing one device object from the engine invalidates the remaining
references. These remaining references should be cleared from the
workspace with the clear function.

• If you delete a device object while it is running, then a warning is issued
before it is deleted. You cannot delete a device object while it is logging or
sending data.

You should use delete at the end of a data acquisition session. You can quickly
delete all existing device objects with the command delete(daqfind).

obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.
10-50

delete
If you use the help command to display the M-file help for delete, then you
must supply the pathname shown below.

help daq/daqdevice/delete

Example National Instruments
Create the analog input object ai for a National Instruments board, add
hardware channels 0-7 to it, and make a copy of hardware channels 0 and 1.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);
ch = ai.Channel(1:2);

To delete hardware channels 0 and 1:

delete(ch)

These channels are deleted from the data acquisition engine and are no longer
associated with ai. The remaining channels are reindexed such that the
indices begin at 1 and increase monotonically to 6. To delete ai:

delete(ai)

Sound Card
Create the analog input object AI1 for a sound card, and configure it to operate
in stereo mode.

AI1 = analoginput('winsound');
addchannel(AI1,1:2);

You can now configure the sound card for mono mode by deleting hardware
channel 2.

delete(AI1.Channel(2))

If hardware channel 1 is deleted instead, an error is returned.

See Also Functions
clear, daqreset
10-51

digitalio
10digitalioPurpose Create a digital I/O object

Syntax DIO = digitalio('adaptor',ID)

Arguments

Description DIO = digitalio('adaptor',ID) creates the digital I/O object DIO for the
specified adaptor and for the hardware device with device identifier ID. ID can
be specified as an integer or a string.

Remarks More About Creating Digital I/O Objects

• When a digital I/O object is created, it does not contain any hardware lines.
To execute the device object, hardware lines must be added with the addline
function.

• You can create multiple digital I/O objects that are associated with a
particular digital I/O subsystem. However, you can typically execute only
one object at a time.

• The digital I/O object exists in the data acquisition engine and in the
MATLAB workspace. If you create a copy of the device object, it references
the original device object in the engine.

• The Name property is automatically assigned a descriptive name that is
produced by concatenating adaptor, ID, and -DIO. You can change this name
at any time.

The Parallel Port Adaptor
The toolbox provides basic DIO capabilities through the parallel port. The PC
supports up to three parallel ports that are assigned the labels LPT1, LPT2,
and LPT3. You can use only these ports. If you add additional ports to your
system, or if the standard ports do not use the default memory resources, they
will not be accessible by the toolbox. For more information about the parallel
port, refer to “Parallel Port Characteristics” on page 7-7.

'adaptor' The hardware driver adaptor name. The supported adaptors
are advantech, keithley, mcc, nidaq, and parallel.

ID The hardware device identifier.

DIO The digital I/O object.
10-52

digitalio
More About the Hardware Device Identifier
When data acquisition devices are installed, they are assigned a unique
number, which identifies the device in software. The device identifier is
typically assigned automatically and can usually be manually changed using a
vendor-supplied device configuration utility. National Instruments refers to
this number as the device number.

There are two ways you can determine the ID for a particular device:

• Type daqhwinfo('adaptor').

• Open the vendor-supplied device configuration utility.

Example Create a digital I/O object for a National Instruments device defined as device
number 1.

DIO = digitalio('nidaq',1);

Create a digital I/O object for parallel port LPT1.

DIO = digitalio('parallel','LPT1');

See Also Functions
addline, daqhwinfo

Properties
Name
10-53

disp
10dispPurpose Display summary information for device objects, channels, or lines

Syntax disp(obj)
disp(obj.Channel(index))
disp(obj.Line(index))

Arguments

Description disp(obj) displays summary information for the specified device object obj,
and any channels or lines contained by obj. Typing obj at the command line
produces the same summary information.

disp(obj.Channel(index)) displays summary information for the specified
channels contained by obj. Typing obj.Channel(index) at the command line
produces the same summary information.

disp(obj.Line(index)) displays summary information for the specified lines
contained by obj. Typing obj.Line(index) at the command line produces the
same summary information.

Remarks You can invoke disp by typing the device object at the MATLAB command line
or by excluding the semicolon when

• Creating a device object

• Adding channel or lines

• Configuring property values using the dot notation

obj A device object.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.
10-54

disp
As shown below, you can also display summary information via the Workspace
browser by right-clicking a device object, a channel object, or a line object and
selecting Explore -> Display Summary from the context menu.

Example All the commands shown below produce summary information for the device
object AI or the channels contained by AI.

AI = analoginput('winsound')
chans = addchannel(AI,1:2)
AI.SampleRate = 44100
AI.Channel(1).ChannelName = 'CH1'
chans

Access context (pop-up) menus
by right-clicking a device object.
10-55

flushdata
10flushdataPurpose Remove data from the data acquisition engine

Syntax flushdata(obj)
flushdata(obj,'mode')

Arguments

Description flushdata(obj) removes all data from the data acquisition engine and resets
the SamplesAvailable property to zero.

flushdata(obj,'mode') removes data from the data acquisition engine
depending on the value of mode:

• If mode is all, then flushdata removes all data from the engine and the
SamplesAvailable property is set to 0. This is the same as flushdata(obj).

• If mode is triggers, then flushdata removes the data acquired during one
trigger. triggers is a valid choice only when the TriggerRepeat property is
greater than 0 and the SamplesPerTrigger property is not inf. The data
associated with the oldest trigger is removed first.

Example Create the analog input object ai for a National Instruments board and add
hardware channels 0-7 to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);

A 2-second acquisition is configured and the device object is executed.

set(ai,'SampleRate',2000)
duration = 2;
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger',ActualRate*duration)
start(ai)

Four thousand samples will be acquired for each channel group member. To
extract 1000 samples from the data acquisition engine for each channel:

data = getdata(ai,1000);

obj An analog input object or array of analog input objects.

'mode' Specifies how much data is removed from the engine.
10-56

flushdata
You can use flushdata to remove the remaining 3000 samples from the data
acquisition engine.

flushdata(ai)
ai.SamplesAvailable
ans =
 0

See Also Functions
getdata

Properties
SamplesAvailable, SamplesPerTrigger, TriggerRepeat
10-57

get
10getPurpose Return device object properties

Syntax out = get(obj)
out = get(obj.Channel(index))
out = get(obj.Line(index))
out = get(obj,'PropertyName')
out = get(obj.Channel(index),'PropertyName')
out = get(obj.Line(index),'PropertyName')
get(...)

Arguments

Description out = get(obj) returns the structure out, where each field name is the name
of a property of obj and each field contains the value of that property.

out = get(obj.Channel(index)) returns the structure out, where each field
name is the name of a channel property of obj and each field contains the value
of that property.

out = get(obj.Line(index)) returns the structure out, where each field
name is the name of a line property of obj and each field contains the value of
that property.

out = get(obj,'PropertyName') returns the value of the property specified
by PropertyName to out. If PropertyName is replaced by a 1-by-n or n-by-1 cell
array of strings containing property names, then get returns a 1-by-n cell
array of values to out. If obj is an array of data acquisition objects, then out
will be an m-by-n cell array of property values where m is equal to the length
of obj and n is equal to the number of properties specified.

out = get(obj.Channel(index),'PropertyName') returns the value of
PropertyName to out for the specified channels contained by obj. If multiple

obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.

'PropertyName' A property name or a cell array of property names.
10-58

get
channels and multiple property names are specified, then out is an m-by-n cell
array where m is the number of channels and n is the number of properties.

out = get(obj.Line(index),'PropertyName') returns the value of
PropertyName to out for the specified lines contained by obj. If multiple lines
and multiple property names are specified, then out is an m-by-n cell array
where m is the number of lines and n is the number of properties.

get(...) displays all property names and their current values for the specified
device object, channel, or line. Base properties are displayed first followed by
device-specific properties.

Remarks If you use the help command to display the M-file help for get, then you must
supply the pathname shown below.

help daq/daqdevice/get

Example Create the analog input object ai for a sound card and configure it to operate
in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

The commands shown below are some of the ways you can use get to return
property values.

chan = get(ai,'Channel');
out = get(ai,{'SampleRate','TriggerDelayUnits'});
out = get(ai);
get(chan(1),'Units')
get(chan,{'Index','HwChannel','ChannelName'})

See Also Functions
set, setverify
10-59

getdata
10getdataPurpose Extract data, time, and event information from the data acquisition engine

Syntax data = getdata(obj)
data = getdata(obj,samples)
data = getdata(obj,'type')
data = getdata(obj,samples,'type')
[data,time] = getdata(...)
[data,time,abstime] = getdata(...)
[data,time,abstime,events] = getdata(...)

Arguments

Description data = getdata(obj) extracts the number of samples specified by the
SamplesPerTrigger property for each channel contained by obj. data is an
m-by-n array where m is the number of samples extracted and n is the number
of channels.

data = getdata(obj,samples) extracts the number of samples specified by
samples for each channel contained by obj.

obj An analog input object.

samples The number of samples to extract. If samples is not specified,
the number of samples extracted is given by the
SamplesPerTrigger property.

'type' Specifies the format of the extracted data as double (the
default) or as native.

data An m-by-n array where m is the number of samples
extracted and n is the number of channels contained by obj.

time An m-by-1 array of relative time values where m is the
number of samples extracted. Relative time is measured
with respect to the first sample logged by the engine.

abstime The absolute time of the first trigger returned as a clock
vector. This value is identical to the value stored by the
InitialTriggerTime property.

events A structure containing a list of events that occurred up to the
time of the getdata call.
10-60

getdata
data = getdata(obj,'type') extracts data in the specified format. If type is
specified as native, the data is returned in the native data format of the device.
If type is specified as double (the default), the data is returned as doubles.

data = getdata(obj,samples,'type') extracts the number of samples
specified by samples in the format specified by type for each channel contained
by obj.

[data,time] = getdata(...) returns data as sample-time pairs. time is an
m-by-1 array of relative time values, where m is the number of samples
returned in data. Each element of time indicates the relative time, in seconds,
of the corresponding sample in data, measured with respect to the first sample
logged by the engine.

[data,time,abstime] = getdata(...) extracts data as sample-time pairs
and returns the absolute time of the trigger. The absolute time is returned as
a clock vector and is identical to the value stored by the InitialTriggerTime
property.

[data,time,abstime,events] = getdata(...) extracts data as sample-time
pairs, returns the absolute time of the trigger, and returns a structure
containing a list of events that occurred up to the getdata call. The possible
events that can be returned are identical to those stored by the EventLog
property.

Remarks More About getdata

• In most circumstances, getdata returns all requested data and does not miss
any samples. In the unlikely event that the engine cannot keep pace with the
hardware device, it is possible that data is missed. If data is missed, the
DataMissedFcn property is called and the device object is stopped.

• getdata is a blocking function because it returns execution control to the
MATLAB workspace only when the requested number of samples are
extracted from the engine for each channel group member.

• You can issue ^C (Control+C) while getdata is blocking. This will not stop
the acquisition but will return control to MATLAB.

• The amount of data that you can extract from the engine is given by the
SamplesAvailable property.
10-61

getdata
More About Extracting Data From the Engine

• Once the requested data is extracted from the engine, the SamplesAvailable
property value is automatically reduced by the number of samples returned.

• If the requested number of samples is greater than the samples to be
acquired, then an error is returned.

• If the requested data is not returned in the expected amount of time, an error
is returned. The expected time to return data is given by the time it takes the
engine to fill one data block plus the time specified by the Timeout property.

• If multiple triggers are included in a single getdata call, a NaN is inserted
into the returned data and time arrays and the absolute time returned is
given by the first trigger.

• MATLAB supports math operations only for the double data type. Therefore,
to use math functions on native data, you must convert it to doubles.

Example Create the analog input object ai for a National Instruments board and add
hardware channels 0-3 to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:3);

Configure a one second acquisition with SampleRate set to 1000 samples per
second and SamplesPerTrigger set to 1000 samples per trigger.

set(ai,'SampleRate',1000)
set(ai,'SamplesPerTrigger',1000)
start(ai)

The following getdata command blocks execution control until all sample-time
pairs, the absolute time of the trigger, and any events that occurred during the
getdata call are returned.

[data,time,abstime,events] = getdata(ai);

data is returned as a 1000-by-4 array of doubles, time is returned as a
1000-by-1 vector of relative times, abstime is returned as a clock vector, and
events is returned as a 3-by-1 structure array.
10-62

getdata
The three events returned are the start event, the trigger event, and the stop
event. To return specific event information about the stop event, you must
access the Type and Data fields.

EventType = events(3).Type;
EventData = events(3).Data;

See Also Functions
flushdata, getsample, peekdata

Properties
DataMissedFcn, EventLog, SamplesAvailable, SamplesPerTrigger, Timeout
10-63

getsample
10getsamplePurpose Immediately acquire one sample

Syntax sample = getsample(obj)

Arguments

Description sample = getsample(obj) immediately returns a row vector containing one
sample for each channel contained by obj.

Remarks Using getsample is a good way to test your analog input configuration.
Additionally:

• getsample does not store samples in, or extract samples from, the data
acquisition engine.

• You can execute getsample at any time after channels have been added to
obj.

• Except for sound cards, you can use getsample on an analog input object that
is not running (Running is Off). For sound cards, the device object must be
running.

Example Create the analog input object ai and add eight channels to it.

ai = analoginput('nidaq',1);
ch = addchannel(ai,0:7);

The following command returns one sample for each channel.

sample = getsample(ai);

See Also Functions
getdata, peekdata

obj An analog input object.

sample A row vector containing one sample for each channel
contained by obj.
10-64

getvalue
10getvaluePurpose Read values from lines

Syntax out = getvalue(obj)
out = getvalue(obj.Line(index))

Arguments

Description out = getvalue(obj) returns the current value from all lines contained by
obj as a binary vector to out.

out = getvalue(obj.Line(index)) returns the current value from the lines
specified by obj.Line(index).

Remarks More About Reading Values from Lines

• By default, out is returned as a binary vector (binvec). A binvec value is
constructed with the least significant bit (LSB) in the first column and the
most significant bit (MSB) in the last column. For example, the decimal
number 23 is written as the binvec value [1 1 1 0 1].

• You can convert a binvec value to a decimal value with the binvec2dec
function.

• If obj contains lines from a port-configurable device, the data acquisition
engine will automatically read from all the lines even if they are not
contained by the device object.

Example Create the digital I/O object dio and add eight input lines to it.

dio = digitalio('nidaq',1);
lines = addline(dio,0:7,'in');

To return the current values from all lines contained by dio as a binvec value:

out = getvalue(dio);

See Also Functions
binvec2dec

obj A digital I/O object.

obj.Line(index) One or more lines contained by obj.

out A binary vector.
10-65

ischannel
10ischannelPurpose Check for channels

Syntax out = ischannel(obj.Channel(index))

Arguments

Description out = ischannel(obj.Channel(index)) returns a logical 1 to out if
obj.Channel(index) is a channel. Otherwise, a logical 0 is returned.

Remarks ischannel does not determine if channels are valid (associated with
hardware). To check for valid channels, use the isvalid function.

Typically, you use ischannel directly only when you are creating your own
M-files.

Example Suppose you create the function myfunc for use with the Data Acquisition
Toolbox. If myfunc is passed one or more channels as an input argument, then
the first thing you should do in the function is check if the argument is a
channel.

function myfunc(chan)
% Determine if a channel was passed.
if ~ischannel(chan)
 error('The argument passed is not a channel.');
end

You can examine the Data Acquisition Toolbox M-files for examples that use
ischannel.

See Also Functions
isvalid

obj.Channel(index) One or more channels contained by obj.

out A logical value.
10-66

isdioline
10isdiolinePurpose Check for lines

Syntax out = isdioline(obj.Line(index))

Arguments

Description out = isdioline(obj.Line(index)) returns a logical 1 to out if
obj.Line(index) is a line. Otherwise, a logical 0 is returned.

Remarks isdioline does not determine if lines are valid (associated with hardware). To
check for valid lines, use the isvalid function.

Typically, you use isdioline directly only when you are creating your own
M-files.

Example Suppose you create the function myfunc for use with the Data Acquisition
Toolbox. If myfunc is passed one or more lines as an input argument, then the
first thing you should do in the function is check if the argument is a line.

function myfunc(line)
% Determine if a line was passed.
if ~isdioline(line)
 error('The argument passed is not a line.');
end

You can examine the Data Acquisition Toolbox M-files for examples that use
isdioline.

See Also Functions
isvalid

obj.Line(index) One or more lines contained by obj.

out A logical value.
10-67

isvalid
10isvalidPurpose Determine whether device objects, channels, or lines are valid

Syntax out = isvalid(obj)
out = isvalid(obj.Channel(index))
out = isvalid(obj.Line(index))

Arguments

Description out = isvalid(obj) returns a logical 1 to out if obj is a valid device object.
Otherwise, a logical 0 is returned.

out = isvalid(obj.Channel(index)) returns a logical 1 to out if the
channels specified by obj.Channel(index) are valid. Otherwise, a logical 0 is
returned.

out = isvalid(obj.Line(index)) returns a logical 1 to out if the lines
specified by obj.Line(index) are valid. Otherwise, a logical 0 is returned.

Remarks Invalid device objects, channels, and lines are no longer associated with any
hardware and should be cleared from the workspace with the clear function.

Typically, you use isvalid directly only when you are creating your own
M-files.

Example Create the analog input object ai for a National Instruments board and add
eight channels to it.

ai = analoginput('nidaq',1);
ch = addchannel(ai,0:7);

To verify the device object is valid:

isvalid(ai)
ans =
 1

obj A device object or array of device objects.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.

out A logical array.
10-68

isvalid
To verify the channels are valid:

isvalid(ch)'
ans =
 1 1 1 1 1 1 1 1

If you delete a channel, then isvalid returns a logical 0 in the appropriate
location:

delete(ai.Channel(3))
isvalid(ch)'
ans =
 1 1 0 1 1 1 1 1

Typically, you use isvalid directly only when you are creating your own
M-files. Suppose you create the function myfunc for use with the Data
Acquisition Toolbox. If myfunc is passed the previously defined device object ai
as an input argument,

myfunc(ai)

the first thing you should do in the function is check if ai is a valid device
object.

function myfunc(obj)
% Determine if an invalid handle was passed.
if ~isvalid(obj)
 error('Invalid data acquisition object passed.');
end

You can examine the Data Acquisition Toolbox M-files for examples that use
isvalid.

See Also Functions
clear, delete, ischannel, isdioline
10-69

length
10lengthPurpose Return the length of a device object, channel group, or line group

Syntax out = length(obj)
out = length(obj.Channel)
out = length(obj.Line)

Arguments

Description out = length(obj) returns the length of the device object obj to out.

out = length(obj.Channel) returns the length of the channel group
contained by obj.

out = length(obj.Line) returns the length of the line group contained by
obj.

Example Create the analog input object ai for a National Instruments board and add
eight channels to it.

ai = analoginput('nidaq',1);
aich = addchannel(ai,0:7);

Create the analog output object ao for a National Instruments board, add one
channel to it, and create the device object array aiao.

ao = analogoutput('nidaq',1);
aoch = addchannel(ao,0);
aiao = [ai ao]

Index: Subsystem: Name:
 1 Analog Input nidaq1-AI
 2 Analog Output nidaq1-AO

obj A device object or array of device objects.

obj.Channel The channels contained by obj.

obj.Line The lines contained by obj.

out A double.
10-70

length
To find the length of aiao:

length(aiao)
ans =
 2

To find the length of the analog input channel group:

length(aich)
ans =
 8

See Also Functions
size
10-71

load
10loadPurpose Load device objects, channels, or lines into the MATLAB workspace

Syntax load file
load file obj1 obj2. . .
out = load('file','obj1','obj2',. . .)

Arguments

Description load file returns all variables from the MAT-file file into the MATLAB
workspace.

load file obj1 obj2... returns the specified device objects from the
MAT-file file into the MATLAB workspace.

out = load('file','obj1','obj2',...) returns the specified device objects
from the MAT-file file as a structure to out instead of directly loading them
into the workspace. The field names in out match the names of the loaded
device objects. If no device objects are specified, then all variables existing in
the MAT-file are loaded.

Remarks Loading device objects follows these rules:

• Unique device objects are loaded into the MATLAB workspace as well as the
engine.

• If a loaded device object already exists in the engine but not the MATLAB
workspace, the loaded device object automatically reconnects to the engine
device object.

• If a loaded device object already exists in the workspace or the engine but has
different properties than the loaded object, then these rules are followed:

- The read-only properties are automatically reset to their default values.

- All other property values are given by the loaded object and a warning is
issued stating that property values of the workspace object have been
updated.

file The MAT-file name.

obj1 obj2... Device objects, an array of device objects, channels, or lines.

out A structure containing the loaded device objects.
10-72

load
• If the workspace device object is running, then it is stopped before loading
occurs.

• If identical device objects are loaded, then they point to the same device
object in the engine. For example, if you saved the array
x = [ai1 ai1 ai2]

only ai1 and ai2 are created in the engine, and x(1) will equal x(2).

• Values for read-only properties are restored to their default values upon
loading. For example, the EventLog property is restored to an empty vector.
Use the propinfo function to determine if a property is read only.

• Values for the BufferingConfig property when the BufferingMode property
is set to Auto, and the MaxSamplesQueued property might not be restored to
the same value because both these property values are based on available
memory.

Note load is not used to read in acquired data that has been saved to a log
file. You should use the daqread function for this purpose.

If you use the help command to display the M-file help for load, then you must
supply the pathname shown below.

help daq/private/load

Example This example illustrates the behavior of load when the loaded device object has
properties that differ from the workspace object.

ai = analoginput('winsound');
addchannel(ai,1:2);
save ai
ai.SampleRate = 10000;
load ai
Warning: Loaded object has updated property values.

See Also Functions
daqread, propinfo, save
10-73

makenames
10makenamesPurpose Generate a list of descriptive channel or line names

Syntax names = makenames('prefix',index)

Arguments

Description names = makenames('prefix',index) generates a cell array of descriptive
channel or line names by concatenating prefix and index.

Remarks You can pass names as an input argument to the addchannel or addline
function.

If names contains more than one descriptive name, then the size of names must
agree with the number of hardware channels specified in addchannel, or the
number of hardware lines specified in addline.

If the channels or lines are to be referenced by name, then prefix must begin
with a letter and contain only letters, numbers, and underscores. Otherwise
the names can contain any character.

Example Create the analog input object AI. You can use makenames to define descriptive
names for each channel that is to be added to AI.

AI = analoginput('nidaq',1);
names = makenames('chan',1:8);

names is an eight-element cell array of channel names chan1, chan2,..., chan8.
You can now pass names as an input argument to the addchannel function.

addchannel(AI,0:7,names);

See Also Functions
addchannel, addline

'prefix' A string that constitutes the first part of the name.

index Numbers appended to the end of prefix — any MATLAB
vector syntax can be used to specify index as long as the
numbers are positive.

names An m-by-1 cell array of channel names where m is the length
of index.
10-74

muxchanidx
10muxchanidxPurpose Return multiplexed scanned channel index

Syntax scanidx = muxchanidx(obj,muxboard,muxidx)
scanidx = muxchanidx(obj,absmuxidx)

Arguments

Description scanidx = muxchanidx(obj,muxboard,muxidx) returns the scanning index
number of the multiplexed channel specified by muxidx. The multiplexer (mux)
board is specified by muxboard. For each mux board, muxidx can range from
0-31 for differential inputs and 0-63 for single-ended inputs. muxboard and
muxidx are vectors of equal length.

scanidx = muxchanidx(obj,absmuxidx) returns the scanning index number
of the multiplexed channel specified by absmuxidx. absmuxidx is the absolute
index of the channel independent of the mux board.

For single-ended inputs, the first mux board has absolute index values that
range between 0 and 63, the second mux board has absolute index values that
range between 64 and 127, the third mux board has absolute index values that
range between 128 and 191, the fourth mux board has absolute index values
that range between 192 and 255. For example, the absolute index value of the
second single-ended channel on the fourth mux board (muxboard is 4 and
muxidx is 1) is 193.

Remarks scanidx identifies the column number of the data returned by getdata and
peekdata.

Refer to the AMUX-64T User Manual for more information about adding mux
channels based on hardware channel IDs and the number of mux boards used.

obj An analog input object associated with a National
Instruments board.

muxboard The multiplexer board.

muxidx The index number of the multiplexed channel.

absmuxidx The absolute index number of the multiplexed channel.

scanidx The scanning index number of the multiplexed channel.
10-75

muxchanidx
Example Create the analog input object ai for a National Instruments board that is
connected to four AMUX-64T multiplexers, and add 256 channels to ai using
addmuxchannel.

ai = analoginput('nidaq',1);
ai.InputType = 'SingleEnded';
ai.NumMuxBoards = 4;
addmuxchannel(ai);

The following two commands return a scanned index value of 14.

scanidx = muxchanidx(ai,4,1);
scanidx = muxchanidx(ai,193);

See Also Functions
addmuxchannel
10-76

obj2mfile
10obj2mfilePurpose Convert device objects, channels, or lines to MATLAB code

Syntax obj2mfile(obj,'file')
obj2mfile(obj,'file','syntax')
obj2mfile(obj,'file','all')
obj2mfile(obj,'file','syntax','all')

Arguments

Description obj2mfile(obj,'file') converts obj to the equivalent MATLAB code using
the set syntax and saves the code to file. By default, only those properties
that are not set to their default values are written to file.

obj2mfile(obj,'file','syntax') converts obj to the equivalent MATLAB
code using syntax and saves the code to file. The values for syntax can be set,
dot, or named. set uses the set syntax, dot uses subscripted assignment (dot
notation), and named uses named referencing (if defined).

obj2mfile(obj,'file','all') converts obj to the equivalent MATLAB code
using the set syntax and saves the code to file. all specifies that all
properties are written to file.

obj2mfile(obj,'file','syntax','all') converts obj including all of obj’s
properties to the equivalent MATLAB code using syntax and saves the code to
file.

obj A device object, array of device objects, channels, or lines.

'file' The file that the MATLAB code is written to. The full
pathname can be specified. If an extension is not specified,
the .m extension is used.

'syntax' Syntax of the converted MATLAB code. By default, the set
syntax is used. If dot is specified, then the subscripted
referencing syntax is used. If named is specified, then named
referencing is used (if defined).

'all' If all is specified, all properties are written to file. If all is
not specified, only properties that are not set to their default
values are written to file.
10-77

obj2mfile
Remarks If the UserData property is not empty or if any of the callback properties are set
to a cell array of values or a function handle, then the data stored in those
properties is written to a MAT-file when when the object is converted and
saved. The MAT-file has the same name as the M-file containing the object code
(see the example below).

You can recreate the saved device objects by typing the name of the M-file at
the command line. You can also recreate channels or lines, by typing the name
of the M-file with a device object as the only input.

Example Create the analog input object ai for a sound card, add two channels, and set
values for several properties.

ai = analoginput('winsound');
addchannel(ai,1:2);
set(ai,'Tag','myai','TriggerRepeat',4)
set(ai,'StartFcn',{@mycallback,2,magic(10)})

The following command writes MATLAB code to the files myai.m and myai.mat.

obj2mfile(ai,'myai.m','dot')

myai.m contains code that recreates the analog input code shown above using
the dot notation for all properties that have their default values changed.
Because StartFcn is set to a cell array of values, this property appears in
myai.m as

ai.StartFcn = startfcn1;

and is saved in myai.mat as

startfcn1 = {@mycallback,2,magic(10)};

To recreate ai and assign the device object to a new variable ainew:

ainew = myai;

The associated MAT-file, myai.mat, is automatically loaded.
10-78

peekdata
10peekdataPurpose Preview most recent acquired data

Syntax data = peekdata(obj,samples)

Arguments

Description data = peekdata(obj,samples) returns the latest number of samples
specified by samples to data.

Remarks More About Using peekdata

• Unlike getdata, peekdata is a nonblocking function that immediately
returns control to MATLAB. Because peekdata does not block execution
control, data might be missed or repeated.

• peekdata takes a “snapshot” of the most recent acquired data and does not
remove samples from the data acquisition engine. Therefore, the
SamplesAvailable property value is not affected when peekdata is called.

Rules for Using peekdata

• You can call peekdata before a trigger executes. Therefore, peekdata is
useful for previewing data before it is logged to the engine or to a disk file.

• In most cases, you will call peekdata while the device object is running.
However, you can call peekdata once after the device object stops running.

• If samples is greater than the number of samples currently acquired, all
available samples are returned with a warning message stating that the
requested number of samples were not available.

obj An analog input object.

samples The number of samples to preview for each channel
contained by obj.

data An m-by-n matrix where m is the number of samples and n is
the number of channels.
10-79

peekdata
Example Create the analog input object ai for a National Instruments board, add eight
input channels, and configure ai for a two second acquisition.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);
set(ai,'SampleRate',2000)
set(ai,'SamplesPerTrigger',4000)

After issuing the start function, you can preview the data.

start(ai)
data = peekdata(ai,100);

peekdata returns 100 samples to data for all eight channel group members. If
100 samples are not available, then whatever samples are available will be
returned and a warning message is issued. The data is not removed from the
data acquisition engine.

See Also Functions
getdata, getsample

Properties
SamplesAvailable
10-80

propinfo
10propinfoPurpose Return property characteristics for device objects, channels, or lines

Syntax out = propinfo(obj)
out = propinfo(obj,'PropertyName')

Arguments

Description out = propinfo(obj) returns the structure out whose field names are the
property names for obj. Each property name in out contains the fields shown
below.

obj A device object, channels, or lines.

'PropertyName' A valid obj property name.

out A structure whose field names are the property
names for obj (if PropertyName is not specified).

Field Name Description

Type The property data type. Possible values are any,
callback, double, and string.

Constraint The type of constraint on the property value. Possible
values are bounded, callback, enum, and none.

ConstraintValue The property value constraint. The constraint can be
a range of valid values or a list of valid string values.

DefaultValue The property default value.

ReadOnly If the property is read-only, a 1 is returned.
Otherwise, a 0 is returned.

ReadOnlyRunning If the property is read-only while the device object is
running, a 1 is returned. Otherwise, a 0 is returned.

DeviceSpecific If the property is device-specific, a 1 is returned. If a 0
is returned, the property is supported for all device
objects of a given type.
10-81

propinfo
out = propinfo(obj,'PropertyName') returns the structure out for the
property specified by PropertyName. If PropertyName is a cell array of strings,
a cell array of structures is returned for each property.

Example Create the analog input object ai for a sound card and configure it to operate
in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

To capture all property information for all common ai properties:

out = propinfo(ai);

To display the default value for the SampleRate property:

out.SampleRate.DefaultValue
ans =
 8000

To display all the property information for the InputRange property:

propinfo(ai.Channel,'InputRange')
ans =
 Type: 'double'
 Constraint: 'Bounded'
 ConstraintValue: [-1 1]
 DefaultValue: [-1 1]
 ReadOnly: 0
 ReadOnlyRunning: 1
 DeviceSpecific: 0

See Also Functions
daqhelp
10-82

putdata
10putdataPurpose Queue data in the engine for eventual output

Syntax putdata(obj,data)

Arguments

Description putdata(obj,data) queues the data specified by data in the engine for
eventual output to the analog output subsystem. data must consist of a column
of data for each channel contained by obj.

Remarks More About Queueing Data

• Data must be queued in the engine before obj is executed.

• putdata is a blocking function because it returns execution control to the
MATLAB workspace only when the requested number of samples are queued
in the engine for each channel group member.

• If the value of the RepeatOutput property is greater than 0, then all queued
data is automatically requeued until the RepeatOutput value is reached.
RepeatOutput must be configured before start is issued.

• After obj executes, you can continue to queue data unless RepeatOutput is
greater than 0.

• You can queue data in the engine until the value specified by the
MaxSamplesQueued property is reached, or the limitations of your hardware
or computer are reached.

More About Outputting Data

• Data is output as soon as a trigger occurs.

• An error is returned if a NaN is included in the data stream.

• You can specify data as the native data type of the hardware. Note that
MATLAB supports math operations only for the double data type. Therefore,
to use math functions on native data, you must convert it to doubles.

• If the output data is not within the range specified by the OutputRange
property, then the data is clipped.

obj An analog output object.

data The data to be queued in the engine.
10-83

putdata
• The SamplesOutput property keeps a running count of the total number of
samples that have been output per channel.

• The SamplesAvailable property tells you how many samples are ready to be
output from the engine per channel. After data is output, SamplesAvailable
is automatically reduced by the number of samples sent to the hardware.

Example Create the analog output object ao for a National Instruments board, add two
output channels to it, and generate 10 seconds of data to be output.

ao = analogoutput('nidaq',1);
ch = addchannel(ao,0:1);
set(ao,'SampleRate',1000)
data = linspace(0,1,10000)';

Before you can output data, it must be queued in the engine using putdata.

putdata(ao,[data data])
start(ao)

See Also Functions
putsample

Properties
MaxSamplesQueued, OutputRange, RepeatOutput, SamplesAvailable,
SamplesOutput, Timeout, UnitsRange
10-84

putsample
10putsamplePurpose Immediately output one sample

Syntax putsample(obj,data)

Arguments

Description putsample(obj,data) immediately outputs the row vector data, which
consists of one sample for each channel contained by obj.

Remarks Using putsample is a good way to test your analog output configuration.
Additionally:

• putsample does not store samples in the data acquisition engine.

• putsample can be executed at any time after channels have been added to
obj.

• putsample is not supported for sound cards.

Example Create the analog output object ao for a National Instruments board and add
two hardware channels to it.

ao = analogoutput('nidaq',1);
ch = addchannel(ao,0:1);

To call putsample for ao:

putsample(ao,[1 1])

See Also Functions
putdata

obj An analog output object.

data The data to be queued in the engine.
10-85

putvalue
10putvaluePurpose Write values to lines

Syntax putvalue(obj,data)
putvalue(obj.Line(index),data)

Arguments

Description putvalue(obj,data) writes data to the hardware lines contained by the
digital I/O object obj.

putvalue(obj.Line(index),data) writes data to the hardware lines specified
by obj.Line(index).

Remarks More About Writing Values to Lines

• You can specify data as either a decimal value or a binary vector. A binary
vector (or binvec) is constructed with the least significant bit (LSB) in the
first column and the most significant bit (MSB) in the last column. For
example, the decimal number 23 is written as the binary vector [1 1 1 0 1].

• If obj contains lines from a port-configurable device, then all lines will be
written to even if they are not contained by the device object.

• An error will be returned if data is written to an input line.

• An error is returned if you attempt to write a negative value.

• If a decimal value is written to a digital I/O object and the value is too large
to be represented by the hardware, then an error is returned.

Example Create the digital I/O object dio and add four output lines to it.

dio = digitalio('nidaq',1);
lines = addline(dio,0:3,'out');

Write the value 8 as a decimal value and as a binary vector.

putvalue(dio,8)
putvalue(dio,[0 0 0 1])

obj A digital I/O object.

obj.Line(index) One or more lines contained by obj.

data A decimal value or binary vector.
10-86

save
10savePurpose Save device objects to a MAT-file

Syntax save file
save file obj1 obj2...

Arguments

Description save file saves all MATLAB variables to the MAT-file file. If an extension
is not specified for file, then a .MAT extension is used.

save file obj1 obj2... saves the specified device objects to file.

Remarks Saving device objects follows these rules:

• You can use save in the functional form as well as the command form shown
above. When using the functional form, you must specify the filename and
device objects as strings.

• Samples associated with a device object are not stored in the MAT-file. You
can bring these samples into the MATLAB workspace with the getdata
function, and then save them to the MAT-file using a separate variable
name. You can also log samples to disk by configuring the LoggingMode
property to Disk or Disk&Memory.

• Values for read-only properties are restored to their default values upon
loading. For example, the EventLog property is restored to an empty vector.
Use the propinfo function to determine if a property is read only.

• Values for the BufferingConfig property (if the BufferingMode property is
set to Auto) and the MaxSamplesQueued property might not be restored
because both these property values are based on available memory.

If you use the help command to display the M-file help for save, then you must
supply the pathname shown below.

help daq/private/save

See Also Functions
getdata, load, propinfo

file The MAT-file name.

obj1 obj2... One or more device objects or an array of device objects.
10-87

set
10setPurpose Configure or display device object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments

Description set(obj) displays all configurable properties for obj. If a property has a finite
list of possible string values, then these values are also displayed.

props = set(obj) returns all configurable properties to props. props is a
structure array with fields given by the property names, and possible property
values contained in cell arrays. if the property does not have a finite set of
possible values, then the cell array is empty.

set(obj,'PropertyName') displays the valid values for the property specified
by PropertyName. PropertyName must have a finite set of possible values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible values or an empty cell
array if the property does not have a finite set of possible values.

obj A device object, array of device objects, channels, or lines.

'PropertyName' A property name.

PropertyValue A property value.

PN A cell array of property names.

PV A cell array of property values.

S A structure whose field names are device object, channel,
or line properties.

props A structure array whose field names are the property
names for obj, or a cell array of possible values.
10-88

set
set(obj,'PropertyName',PropertyValue,...) sets multiple property values
with a single statement. Note that you can use structures, property name/
property value string pairs, and property name/property value cell array pairs
in the same call to set.

set(obj,PN,PV) sets the properties specified in the cell array of strings PN to
the corresponding values in the cell array PV. PN must be a vector. PV can be
m-by-n where m is equal to the specified number of device objects, channels, or
lines and n is equal to the length of PN.

set(obj,S) where S is a structure whose field names are device object
properties, sets the properties named in each field name with the values
contained in the structure.

Remarks If you use the help command to display the M-file help for set, then you must
supply the pathname shown below.

help daq/daqdevice/set

Example Create the analog input object ai for a sound card and configure it to operate
in stereo mode.

ai = analoginput('winsound');
addchannel(ai,1:2);

To display all of ai’s configurable properties and their valid values:

set(ai)

To set the value for the SampleRate property to 10000:

set(ai,'SampleRate',10000)

The following two commands set the value for the SampleRate and InputType
properties using one call to set.

set(ai,'SampleRate',10000,'TriggerType','Manual')
set(ai,{'SampleRate','TriggerType'},{10000,'Manual'})
10-89

set
You can also set different channel property values for multiple channels.

ch = ai.Channel(1:2);
set(ch,{'UnitsRange','ChannelName'},{[-1 1] 'Name1'; [-2 2]
'Name2'})

See Also Functions
get, setverify
10-90

setverify
10setverifyPurpose Configure and return the specified property

Syntax Actual = setverify(obj,'PropertyName',PropertyValue)
Actual = setverify(obj.Channel(index),'PropertyName',PropertyValue)
Actual = setverify(obj.Line(index),'PropertyName',PropertyValue)

Arguments

Description Actual = setverify(obj,'PropertyName',PropertyValue) sets
PropertyName to PropertyValue for obj, and returns the actual property value
to Actual.

Actual =
setverify(obj.Channel(index),'PropertyName',PropertyValue) sets
PropertyName to PropertyValue for the channels specified by index, and
returns the actual property value to Actual.

Actual = setverify(obj.Line(index),'PropertyName',PropertyValue)
sets PropertyName to PropertyValue for the lines specified by index, and
returns the actual property value to Actual.

Remarks setverify is equivalent to the commands

set(obj,'PropertyName',PropertyValue)
Actual = get(obj,'PropertyName')

Using setverify is not required for setting property values, but it does provide
a convenient way to verify the actual property value set by the data acquisition
engine.

obj A device object or array of device objects.

'PropertyName' A property name.

PropertyValue A property value.

obj.Channel(index) One or more channels contained by obj.

obj.Line(index) One or more lines contained by obj.

Actual The actual value for the specified property.
10-91

setverify
setverify is particularly useful when setting the SampleRate, InputRange,
and OutputRange properties because these properties can only be set to specific
values accepted by the hardware. You can use the propinfo function to obtain
information about the valid values for these properties.

If a property value is specified but does not match a valid value, then

• If the specified value is within the range of supported values,

- For the SampleRate and InputRange properties, the value is automatically
rounded up to the next highest supported value.

- For all other properties, the value is automatically selected to be the
nearest supported value.

• If the value is not within the range of supported values, an error is returned
and the current property value remains unchanged.

Example Create the analog input object ai for a National Instruments AT-MIO-16DE-10
board, add eight hardware channels to it, and set the sample rate to 10,000 Hz
using setverify.

ai = analoginput('nidaq',1);
ch = addchannel(ai,0:7);
ActualRate = setverify(ai,'SampleRate',10000);

Suppose you use setverify to set the input range for all channels contained by
ai to -8 to 8 volts.

ActualInputRange = setverify(ai.Channel,'InputRange',[-8 8]);

The InputRange value was actually rounded up to -10 to 10 volts.

ActualInputRange{1}
ans =
 -10 10

See Also Functions
get, propinfo, set

Properties
InputRange, OutputRange, SampleRate
10-92

showdaqevents
10showdaqeventsPurpose Display event log information

Syntax showdaqevents(obj)
showdaqevents(obj,index)
showdaqevents(struct)
showdaqevents(struct,index)
out = showdaqevents(...)

Arguments

Description showdaqevents(obj) displays a summary of the event log for obj.

showdaqevents(obj,index) displays a summary of the events specified by
index for obj.

showdaqevents(struct) displays a summary of the events stored in the
structure struct.

showdaqevents(struct,index) displays a summary of the events specified by
index stored in the structure struct.

out = showdaqevents(...) outputs the event information to a one column cell
array out. Each element of out is a string that contains the event information
associated with that index value.

Remarks You can pass a structure of event information to showdaqevents. This structure
can be obtained from the getdata function, the daqread function, or the
EventLog property.

obj An analog input or analog output object.

index The event index.

struct An event structure.

out A one column cell array of event information.
10-93

showdaqevents
As shown below, you can also display event information via the Workspace
browser by right-clicking a device object and selecting Explore -> Show DAQ
Events from the context menu.

Example Create the analog input object ai for a sound card, add two channels, and
configure ai to execute three triggers.

ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ai,'TriggerRepeat',2)

Start ai and display the trigger event information with showdaqevents.

start(ai)
showdaqevents(ai,2:4)

2 Trigger#1 (17:07:06, 0) Channel: N/A
 3 Trigger#2 (17:07:07, 8000) Channel: N/A
 4 Trigger#3 (17:07:08, 16000) Channel: N/A

See Also Functions
daqread, getdata

Properties
EventLog

Access context (pop-up) menus
by right-clicking a device object.
10-94

size
10sizePurpose Return the size of a device object, channel group, or line group

Syntax d = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)
d = size(obj.Channel)
[m1,m2,m3,...,mn] = size(obj.Channel)
m = size(obj.Channel,dim)
d = size(obj.Line)
[m1,m2,m3,...,mn] = size(obj.Line)
m = size(obj.Line,dim)

Arguments

Description d = size(obj) returns the two-element row vector d = [m,n] containing the
number of rows and columns in obj.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n dimensions
of obj to separate output variables. For example, [m,n] = size(obj) returns
the number of rows to m and the number of columns to n.

m = size(obj,dim) returns the length of the dimension specified by the scalar
dim. For example, size(obj,1) returns the number of rows.

d = size(obj.Channel) returns the two-element row vector d = [m,n]
containing the number of rows and columns in the channel group obj.Channel.

obj A device object or array of device objects.

dim The dimension.

obj.Channel The channels contained by obj.

obj.Line The lines contained by obj.

d A two-element row vector containing the number of rows
and columns in obj.

m1,m2,m3,...,mn Each dimension of obj is captured in a separate variable.

m The length of the dimension specified by dim.
10-95

size
[m1,m2,m3,...,mn] = size(obj.Channel) returns the length of the first n
dimensions of the channel group obj.Channel to separate output variables. For
example, [m,n] = size(obj.Channel) returns the number of rows to m and the
number of columns to n.

m = size(obj.Channel,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj.Channel,1) returns the number of
rows.

d = size(obj.Line) returns the two-element row vector d = [m,n] containing
the number of rows and columns in the line group obj.Line.

[m1,m2,m3,...,mn] = size(obj.Line) returns the length of the first n
dimensions of the line group obj.Line to separate output variables. For
example, [m,n] = size(obj.Line) returns the number of rows to m and the
number of columns to n.

m = size(obj.Line,dim) returns the length of the dimension specified by the
scalar dim. For example, size(obj.Line,1) returns the number of rows.

Example Create the analog input object ai for a National Instruments board and add
eight channels to it.

ai = analoginput('nidaq',1);
ch = addchannel(ai,0:7);

To find the size of the device object:

size(ai)
ans =
 1 1

To find the size of the channel group:

size(ch)
ans =
 8 1

See Also Functions
length
10-96

softscope
10softscopePurpose Open the data acquisition oscilloscope

Syntax softscope
softscope(obj)
softscope('fname.si')

Arguments

Description softscope opens the Hardware Configuration graphical user interface (GUI),
which allows you to configure the hardware device to be used with the
Oscilloscope. The Oscilloscope opens when you press the OK button, and at
least one hardware channel is selected.

softscope(obj) opens the Oscilloscope configured to display the data acquired
from the analog input object, obj. obj must contain at least one hardware
channel.

softscope('fname.si') opens the Oscilloscope using the settings saved in the
softscope file specified by fname. fname is generated from the Oscilloscope's
File->Save or File->Save As menu item.

Remarks The Oscilloscope is a graphical user interface (GUI) that allows you to

• Stream acquired data into a display

• Scale displayed data, and configure triggers and measurements

• Configure analog input hardware settings

• Export measurements and acquired data

To support these tasks, the Oscilloscope includes several helper GUIs, which
are described below.

obj An analog input object.

fname.si Name of the file containing Oscilloscope settings.
10-97

softscope
Hardware Configuration
The Hardware Configuration GUI allows you to add channels from a particular
hardware device to the Oscilloscope. You can configure the device’s sample rate
and input type, as well as the input range for each added channel. The GUI
shown below is configured to add both sound card channels using the default
sample rate.

Oscilloscope
The Oscilloscope consists of these panels:

• Display panel — The display panel contains the hardware channel data (a
trace) and the measurements, if defined. The display area also contains
labels for each channel's horizontal and vertical units, and indicators for

- Each trace

- The trigger level (if defined)

- The location of the start of the trigger (used for pretriggers)

• Channel panel — The channel panel lists the hardware channels, math
channels, and reference channels that are currently being viewed in a
display. The Channel Panel also contains knobs for configuring

- The display's horizontal offset and horizontal scale

- The selected channel’s vertical offset and vertical scale
10-98

softscope
• Trigger panel — The trigger panel allows you to define how data acquisition
is initiated. There are three trigger types:

- One-shot — Acquire the specified number of samples once.

- Continuous — Continuously acquire the specified number of samples.

- Sequence — Continuously acquire the specified number of samples, and
use the dependent trigger type each time.

For each trigger type, the Oscilloscope begins to acquire data after you press
the Trigger button.

• Measurement panel — The measurement panel lists all measurements that
are currently being taken. When defining a measurement, you must specify

- The hardware, math, or reference channel

- The measurement type

- Whether the measurement result is drawn as a cursor in the display

The oscilloscope GUI shown below is configured to display the sound card
channels in separate displays.

Display panel Channel panel Trigger panel Measurement panel
10-99

softscope
Channel Exporter
The Channel Exporter allows you to export the data associated with a
hardware channel, a math channel, or a reference channel. You can export the
channel data to one of four destinations:

• The MATLAB workspace as an array

• The MATLAB workspace as a structure

• A MATLAB figure window

• A MAT-file

All channels added to the oscilloscope are listed in the GUI.
10-100

softscope
Measurement Exporter
The Measurement Exporter allows you to export the data associated with a
measurement. You can export the measurement to one of three destinations:

• The MATLAB workspace

• A MATLAB figure window

• A MAT-file

The number of measurements exported depends on the BufferSize property
value. By default, BufferSize is 1 indicating that the last measurement value
calculated is available to export.
10-101

softscope
Scope Editor
The Scope Editor consists of two panes:

• Scope — Add and remove displays, the channel panel, the measurement
panel, and the trigger panel. Note that you can define as many displays as
you want, but there can only be only one channel panel, measurement panel,
and trigger panel in the Oscilloscope at a time.

• Scope Properties — Configure properties for the displays, the channel
panel, the measurement panel, and the trigger panel.
10-102

softscope
Channel Editor
The Channel Editor consists of three panes:

• Channel — Add or delete math channels and reference channels, and select
which defined channels are available to the Oscilloscope.

• Channel Properties — Configure properties for defined hardware channels,
math channels, and reference channels.

• Channel Display — Select the Oscilloscope display for each defined channel,
or choose to not display a channel.
10-103

softscope
Measurement Editor
The Measurement Editor consists of three panes:

• Measurement — Add or delete measurements, and select which defined
measurements are available to the Oscilloscope.

• Measurement Properties — Configure properties for the defined
measurements.

• Measurement Type — Add or delete measurement types, and select which
defined measurement types are available to the Oscilloscope.
10-104

start
10startPurpose Start a device object

Syntax start(obj)

Arguments

Description start(obj) initiates the execution of the device object obj.

Remarks When start is issued for an analog input or analog output object,

• The M-file callback function specified for StartFcn is executed.

• The Running property is set to On.

• The start event is recorded in the EventLog property.

• Data existing in the engine is flushed.

Although an analog input or analog output object might be executing, data
logging or sending is not necessarily initiated. Data logging or sending requires
a trigger event to occur, and depends on the TriggerType property value.

For any device object, you can specify start as the value for a callback
property.

ai.StopFcn = @start;

Note You typically execute a digital I/O object to periodically update and
display its state. Refer to the diopanel demo for an example of this behavior.

If you want to synchronize the input and output of data, or you require more
control over when your hardware starts, you should use the
ManualTriggerHwOn property.

See Also Functions
stop, trigger

Properties
EventLog, ManualTriggerHwOn, Running, Sending, TriggerType

obj A device object or an array of device objects.
10-105

stop
10stopPurpose Stop a device object

Syntax stop(obj)

Arguments

Description stop(obj) terminates the execution of the device object obj.

Remarks An analog input object automatically stops when the requested samples are
acquired or data is missed. An analog output object automatically stops when
the queued data is output. These two device objects can also stop executing
under one of these conditions:

• The Timeout property value is reached.

• A run-time error occurs.

For analog input objects, stop must be used when the TriggerRepeat property
or SamplesPerTrigger property is set to inf. For analog output objects, stop
must be used when the RepeatOutput property is set to inf. When stop is
issued for either of these device objects,

• The Running property is set to Off.

• The Logging property or Sending property is set to Off.

• The M-file callback function specified for StopFcn is executed.

• The stop event is recorded in the EventLog property.

For any device object, you can specify stop as the value for a callback property.

ao.TimerFcn = @stop;

Note Issuing stop is the only way to stop an executing digital I/O object. You
typically execute a digital I/O object to periodically update and display its
state. Refer to the diopanel demo for an example.

obj A device object or an array of device objects.
10-106

stop
See Also Functions
start, trigger

Properties
EventLog, Logging, RepeatOutput, Running, SamplesPerTrigger, Sending,
Timeout, TriggerRepeat
10-107

trigger
10triggerPurpose Manually execute a trigger

Syntax trigger(obj)

Arguments

Description trigger(obj) manually executes a trigger.

Remarks After trigger is issued,

• The absolute time of the trigger event is recorded by the
InitialTriggerTime property.

• The Logging property or Sending property is set to On.

• The M-file callback function specified by TriggerFcn is executed.

• The trigger event is recorded in the EventLog property.

You can issue trigger only if TriggerType is set to Manual, Running is On, and
Logging is Off.

You can specify trigger as the value for a callback property.

ai.StartFcn = @trigger;

See Also Functions
start, stop

Properties
InitialTriggerTime, Logging, Running, Sending, TriggerFcn, TriggerType

obj An analog input or analog output object or an array of these
device objects.
10-108

waittilstop
10waittilstopPurpose Wait for the device object to stop running

Syntax waittilstop(obj,waittime)

Arguments

Description waittilstop(obj,waittime) blocks the MATLAB command line, and waits
for obj to stop running. You specify the maximum waiting time, in seconds,
with waittime. waittime overrides the value specified for the Timeout
property. If obj is an array of device objects, then waittilstop might wait up
to the specified time for each device object in the array.

waittilstop is particularly useful if you want to guarantee that the specified
data is acquired before another task is performed.

Remarks If obj is not running when waittilstop is issued, or if an error occurs while
obj is running, then waittilstop immediately relinquishes control of the
command line.

When obj stops running, its Running property is automatically set to Off. obj
can stop running under one of the these conditions:

• The requested number of samples is acquired (analog input) or sent out
(analog output).

• The stop function is issued on that object.

• A run-time error occurs.

• The Timeout property value is reached (waittime supersedes this value).

It is not guaranteed that the StopFcn property is called before waittilstop
returns. The stop event is recorded by the EventLog property.

obj A device object or an array of device objects.

waittime The maximum time to wait for obj to stop running.
10-109

waittilstop
Example Create the analog input object ai for a National Instruments board, add eight
channels to it, and configure a 25 second acquisition.

ai = analoginput('nidaq',1);
ch = addchannel(ai,0:7);
ai.SampleRate = 2000;
ai.TriggerRepeat = 4;
ai.SamplesPerTrigger = 10000;

You can use waittilstop to block the MATLAB command line until all the
requested data is acquired. Because the expected acquisition time is 25
seconds, the waittime argument is 26. If the acquisition does not complete
within this time, then a timeout occurs.

start(ai)
waittilstop(ai,26)

See Also Properties
EventLog, Running, StopFcn, Timeout
10-110

11
Base Property Reference

This chapter describes all toolbox base properties. Base properties apply to all supported hardware
subsystems of a given type (analog input, analog output, etc.). For example, the SampleRate property
is supported for all analog input subsystems regardless of the vendor. The sections are as follows.

Base Properties —
Categorical List (p. 11-2)

Contains a series of tables that group base properties by category

Base Properties —
Alphabetical List (p. 11-13)

Lists all the base properties alphabetically

11 Base Property Reference

11-
Base Properties — Categorical List
This section contains brief descriptions of all toolbox base properties. The
properties are categorized according to these subsystems:

• Analog input properties

• Analog output properties

• Digital I/O properties

Depending on the hardware device you are using, additional property names or
property values might be present. The additional property names are described
in Chapter 12, “Device-Specific Property Reference.” For example, only analog
input and analog output objects associated with a sound card have a
BitsPerSample property. The additional property values are also
device-specific but are included in this chapter. For example, all supported
devices have an InputType property, but the value AC-Coupled is unique to
analog input objects associated with a sound card.

Getting Command Line Property Help
To get command line property help, you should use the daqhelp function. For
example, to get help for the SampleRate property

daqhelp SampleRate

Note You can use daqhelp without creating a device object.

You can also get property characteristics, such as the default property value,
using the propinfo function. For example, suppose you create the analog input
object ai for a sound card and you want to find the default value for the
SampleRate property.

ai = analoginput('winsound');
out = propinfo(ai,'SampleRate');
out.DefaultValue
ans =
 8000
2

Base Properties — Categorical List
Analog Input Properties
Analog input base properties are divided into two main categories: common
properties and channel properties. Common properties apply to every channel
contained by the analog input object, while channel properties can be
configured for individual channels.

Common Properties
The analog input common properties are grouped into the following categories
based on usage.

Analog Input Basic Setup Properties.

Analog Input Logging Properties.

SamplesPer
Trigger

Specify the number of samples to acquire for each
channel group member for each trigger that occurs.

SampleRate Specify the per-channel rate at which analog data is
converted to digital data.

TriggerType Specify the type of trigger to execute.

LogFileName Specify the name of the disk file to which information
is logged.

Logging Indicate if data is being logged to memory or to a disk
file.

LoggingMode Specify the destination for acquired data.

LogToDiskMode Specify whether data, events, and hardware
information are saved to one disk file or to multiple
disk files.
11-3

11 Base Property Reference

11-
Analog Input Trigger Properties.

Analog Input Status Properties.

InitialTrigger
Time

Indicate the absolute time of the first trigger.

ManualTrigger
HwOn

Specify that the hardware device starts when a
manual trigger is issued.

TriggerFcn Specify the M-file callback function to execute when a
trigger occurs.

TriggerChannel Specify the channels serving as trigger sources.

TriggerCondition Specify the condition that must be satisfied before a
trigger executes.

TriggerCondition
Value

Specify one or more voltage values that must be
satisfied before a trigger executes.

TriggerDelay Specify the delay value for data logging.

TriggerDelay
Units

Specify the units in which trigger delay data is
measured.

TriggerRepeat Specify the number of additional times the trigger
executes.

TriggersExecuted Indicate the number of triggers that execute.

TriggerType Specify the type of trigger to execute.

Logging Indicate if data is being logged to memory or to a disk
file.

Running Indicate if the device object is running.
4

Base Properties — Categorical List
Analog Input Hardware Configuration Properties.

Analog Input Callback Properties.

SamplesAcquired Indicate the number of samples acquired per
channel.

SamplesAvailable Indicate the number of samples available per
channel in the engine.

ChannelSkew Specify the time between consecutive scanned
hardware channels.

ChannelSkewMode Specify how the channel skew is determined.

ClockSource Specify the clock used to govern the hardware
conversion rate.

InputType Specify the analog input hardware channel
configuration.

SampleRate Specify the per-channel rate at which analog data is
converted to digital data.

DataMissedFcn Specify the M-file callback function to execute when
data is missed.

InputOverRange
Fcn

Specify the M-file callback function to execute when
acquired data exceeds the valid hardware range.

RuntimeErrorFcn Specify the M-file callback function to execute when a
run-time error occurs.

SamplesAcquired
Fcn

Specify the M-file callback function to execute every
time a predefined number of samples is acquired for
each channel group member.

SamplesAcquired
FcnCount

Specify the number of samples to acquire for each
channel group member before a samples acquired
event is generated.
11-5

11 Base Property Reference

11-
Analog Input General Purpose Properties.

Channel Properties
The analog input channel properties are given below.

StartFcn Specify the M-file callback function to execute just
before the device object starts running.

StopFcn Specify the M-file callback function to execute just
after the device object stops running.

TimerFcn Specify the M-file callback function to execute
whenever a predefined period of time passes.

TimerPeriod Specify the period of time between timer events.

TriggerFcn Specify the M-file callback function to execute when a
trigger occurs.

BufferingConfig Specify the per-channel allocated memory.

BufferingMode Specify how memory is allocated.

Channel Contain hardware channels added to the device
object.

EventLog Store information for specific events.

Name Specify a descriptive name for the device object.

Tag Specify a device object label.

Timeout Specify an additional waiting time to extract data.

Type Indicate the device object type.

UserData Store data that you want to associate with a device
object.
6

Base Properties — Categorical List
Analog Input Channel Properties.

Analog Output Properties
Analog output base properties are divided into two main categories: common
properties and channel properties. Common properties apply to every channel
contained by the analog output object, while channel properties can be
configured for individual channels.

Common Properties
The analog output common properties are grouped into the following categories
based on usage.

ChannelName Specify a descriptive channel name.

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.

InputRange Specify the range of the analog input subsystem.

NativeOffset Indicate the offset to use when converting between
the native data format and doubles.

NativeScaling Indicate the scaling to use when converting between
the native data format and doubles.

Parent Indicate the parent (device object) of a channel.

SensorRange Specify the range of data you expect from your
sensor.

Type Indicate a channel.

Units Specify the engineering units label.

UnitsRange Specify the range of data as engineering units.
11-7

11 Base Property Reference

11-
Analog Output Basic Setup Properties.

Analog Output Trigger Properties.

Analog Output Status Properties.

Analog Output Hardware Configuration Properties.

SampleRate Specify the per-channel rate at which digital data is
converted to analog data.

TriggerType Specify the type of trigger to execute.

InitialTrigger
Time

Indicate the absolute time of the first trigger.

TriggerFcn Specify the M-file callback function to execute when a
trigger occurs.

TriggersExecuted Indicate the number of triggers that execute.

TriggerType Specify the type of trigger to execute.

Running Indicate if the device object is running.

SamplesAvailable Indicate the number of samples available per channel
in the engine.

SamplesOutput Indicate the number of samples output per channel
from the engine.

Sending Indicate if data is being sent to the hardware device.

ClockSource Specify the clock used to govern the hardware
conversion rate.

SampleRate Specify the per-channel rate at which digital data is
converted to analog data.
8

Base Properties — Categorical List
Analog Output Data Management Properties.

Analog Output Callback Properties.

MaxSamplesQueued Indicate the maximum number of samples that can
be queued in the engine.

RepeatOutput Specify the number of additional times queued data
is output.

Timeout Specify an additional waiting time to queue data.

RuntimeErrorFcn Specify the M-file callback function to execute when a
run-time error occurs.

SamplesOutputFcn Specify the M-file callback function to execute every
time a predefined number of samples is output for
each channel group member.

SamplesOutput
FcnCount

Specify the number of samples to output for each
channel group member before a samples output event
is generated.

StartFcn Specify the M-file callback function to execute just
before the device object starts running.

StopFcn Specify the M-file callback function to execute just
after the device object stops running.

TimerFcn Specify the M-file callback function to execute
whenever a predefined period of time passes.

TimerPeriod Specify the period of time between timer events.

TriggerFcn Specify the M-file callback function to execute when a
trigger occurs.
11-9

11 Base Property Reference

11-
Analog Output General Purpose Properties.

Channel Properties
The analog output channel properties are given below.

Analog Output Channel Properties.

BufferingConfig Specify the per-channel allocated memory.

BufferingMode Specify how memory is allocated.

Channel Contain hardware channels added to the device
object.

EventLog Store information for specific events.

Name Specify a descriptive name for the device object.

OutOfDataMode Specify how the value held by the analog output
subsystem is determined.

Tag Specify a device object label.

Type Indicate the device object type.

UserData Store data that you want to associate with a device
object.

ChannelName Specify a descriptive channel name.

DefaultChannel
Value

Specify the value held by the analog output
subsystem.

HwChannel Specify the hardware channel ID.

Index Indicate the MATLAB index of a hardware channel.

NativeOffset Indicate the offset to use when converting between
the native data format and doubles.

NativeScaling Indicate the scaling to use when converting between
the native data format and doubles.
10

Base Properties — Categorical List
Digital I/O Properties
Digital I/O base properties are divided into two main categories: common
properties and line properties. Common properties apply to every line
contained by the digital I/O object, while line properties can be configured for
individual lines.

Common Properties
The digital I/O common properties are given below.

Digital I/O Common Properties.

OutputRange Specify the range of the analog output hardware
subsystem.

Parent Indicate the parent (device object) of a channel.

Type Indicate a channel.

Units Specify the engineering units label.

UnitsRange Specify the range of data as engineering units.

Line Contain hardware lines added to the device object.

Name Specify a descriptive name for the device object.

Running Indicate if the device object is running.

Tag Specify a device object label.

TimerFcn Specify the M-file callback function to execute
whenever a predefined period of time passes.

TimerPeriod Specify the period of time between timer events.

Type Indicate the device object type.

UserData Store data that you want to associate with a device
object.
11-11

11 Base Property Reference

11-
Line Properties
The digital I/O line properties are given below.

Digital I/O Line Properties.

Direction Specify whether a line is used for input or output.

HwLine Specify the hardware line ID.

Index Indicate the MATLAB index of a hardware line.

LineName Specify a descriptive line name.

Parent Indicate the parent (device object) of a line.

Port Specify the port ID.

Type Indicate a line.
12

Base Properties — Alphabetical List
Base Properties — Alphabetical List
This section contains detailed descriptions of all toolbox base properties. Each
property reference page contains some or all of this information:

• The property name

• A description of the property

• The property characteristics, including:

- Usage – the device objects the property can be used with, and whether it
is a common property, or a channel or line property

Common properties apply to all channels or lines contained by the device
object, while channel (line) properties can be set on a per-channel
(per-line) basis. The device objects supported by the Data Acquisition
Toolbox include analog input (AI), analog output (AO), and digital I/O
(DIO) objects.

- Access – whether the property is read/write or read-only

Read/write property values can be returned with the get command and
configured with the set command. Read-only property values can be
returned with the get command but cannot be configured with the set
command.

- Data type – the property data type

The supported data types include action function, double, string, Channel,
Line, and any.

- Read-only when running – whether a property value can be configured
when the device object is running

• Valid property values including the default value

When property values are given by a predefined list, the default value is
usually indicated by {} (curly braces). Default values for some properties are
calculated by the data acquisition engine, while others are determined by the
hardware driver. If there are device-specific values, they are listed
separately.

• An example using the property

• Related properties and functions
11-13

BufferingConfig
11BufferingConfigPurpose Specify the per-channel allocated memory

Description BufferingConfig is a two-element vector that specifies the per-channel
allocated memory. The first element of the vector specifies the block size, while
the second element of the vector specifies the number of blocks. The total
allocated memory (in bytes) is given by

(block size).(number of blocks).(number of channels).(native data type)

You can determine the native data type with daqhwinfo.

You can allocate memory automatically or manually. If BufferingMode is Auto,
the BufferingConfig values are automatically set by the engine. If
BufferingMode is Manual, then you must manually set the BufferingConfig
values. If you change the BufferingConfig values, BufferingMode is
automatically set to Manual.

When memory is automatically allocated by the engine, the block-size value
depends on the sampling rate and is typically a binary number. The number of
blocks is initially set to a value of 30 but can dynamically increase to
accommodate the memory requirements. In most cases, the number of blocks
used results in a per-channel memory that is somewhat greater than the
SamplesPerTrigger value. When you manually allocate memory, the number
of blocks is not dynamic and care must be taken to ensure there is sufficient
memory to store the acquired data. If the number of samples acquired or
queued exceeds the allocated memory, then an error is returned.

You can easily determine the memory allocated and available memory for each
device object with the daqmem function.

Characteristics Usage AI, AO, Common

Access Read/write

Data type Two-element vector of doubles

Read-only
when running

Yes
11-14

BufferingConfig
Values The default value is determined by the engine, and is based on the number of
channels contained by the device object and the sampling rate. The
BufferingMode value determines whether the values are automatically
updated as data is acquired. For analog output objects, the default number of
blocks is zero.

Example Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

The block size and number of blocks are given by BufferingConfig, while the
native data type for the sound card is given by daqhwinfo.

ai.BufferingConfig
ans =
 512 30
out = daqhwinfo(ai);
out.NativeDataType
ans =
int16

With this information, the total allocated memory is calculated to be 61,440
bytes. This number is stored by daqmem.

out = daqmem(ai);
out.UsedBytes
ans =
 61440

The allocated memory is more than sufficient to store 8000 two-byte samples
for two channels. If more memory was required, then the number of blocks
would dynamically grow because BufferingMode is set to Auto.

See Also Functions
daqhwinfo, daqmem

Properties
BufferingMode, SampleRate, SamplesPerTrigger
11-15

BufferingMode
11BufferingModePurpose Specify how memory is allocated

Description BufferingMode can be set to Auto or Manual. If BufferingMode is set to Auto,
the data acquisition engine automatically allocates the required memory. If
BufferingMode is set to Manual, you must manually allocate memory with the
BufferingConfig property.

If BufferingMode is set to Auto and the SampleRate value is changed, then the
BufferingConfig values might be recalculated by the engine. Specifically, you
can increase (decrease) the block size if SampleRate is increased (decreased). If
BufferingMode is set to Auto and you change the BufferingConfig values,
then BufferingMode is automatically set to Manual. If BufferingMode is set to
Manual, then you cannot set the number of blocks to a value less than three.

For most data acquisition applications, you should set BufferingMode to Auto
and have memory allocated by the engine because this minimizes the chance of
an out-of-memory condition.

Characteristics

Values

See Also Functions
daqmem

Properties
BufferingConfig

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Auto} Memory is allocated by the data acquisition engine.

Manual Memory is allocated manually.
11-16

Channel
11ChannelPurpose Contain hardware channels added to a device object

Description Channel is a vector of all the hardware channels contained by an analog input
(AI) or analog output (AO) object. Because a newly created AI or AO object does
not contain hardware channels, Channel is initially an empty vector. The size
of Channel increases as channels are added with the addchannel function, and
decreases as channels are removed using the delete function.

Channel is used to reference one or more individual channels. To reference a
channel, you must know its MATLAB index, which is given by the Index
property. For example, you must use Channel with the appropriate indices
when configuring channel property values.

For scanning hardware, the scan order follows the MATLAB index. Therefore,
the hardware channel associated with index 1 is sampled first, the hardware
channel associated with index 2 is sampled second, and so on. To change the
scan order, you can specify a permutation of the indices with Channel.

Characteristics

Values Values are automatically defined when channels are added to the device object
with the addchannel function. The default value is an empty column vector.

Example Create the analog input object ai for a National Instruments card and add
three hardware channels to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:2);

To set a property value for the first channel added (ID = 0), you must reference
the channel by its index using the Channel property.

chans = ai.Channel(1);
set(chans,'InputRange',[-10 10])

Usage AI, AO, Common

Access Read/write

Data type Vector of channels

Read-only
when running

Yes
11-17

Channel
Based on the current configuration, the hardware channels are scanned in
order from 0 to 2. To swap the scan order of channels 0 and 1, you can specify
the appropriate permutation of the MATLAB indices with Channel.

ai.Channel([1 2 3]) = ai.Channel([2 1 3]);

See Also Functions
addchannel, delete

Properties
HwChannel, Index
11-18

ChannelName
11ChannelNamePurpose Specify a descriptive channel name

Description ChannelName specifies a descriptive name for a hardware channel. If a channel
name is defined, then you can reference that channel by its name. If a channel
name is not defined, then the channel must be referenced by its index. Channel
names are not required to be unique.

You can also define descriptive channel names when channels are added to a
device object with the addchannel function.

Characteristics

Values The default value is an empty string. To reference a channel by name, it must
contain only letters, numbers, and underscores and must begin with a letter.

Example Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

To assign a descriptive name to the first channel contained by ai:

Chan1 = ai.Channel(1)
set(Chan1,'ChannelName','Joe')

You can now reference this channel by name instead of by index.

set(ai.Joe,'Units','Decibels')

See Also Functions
addchannel

Usage AI, AO, Channel

Access Read/write

Data type String

Read-only
when running

Yes
11-19

ChannelSkew
11ChannelSkewPurpose Specify the time between consecutive scanned hardware channels

Description ChannelSkew applies only to scanning hardware and not to simultaneous
sample and hold (SS/H) hardware.

If ChannelSkewMode is set to Minimum or Equisample, then ChannelSkew is
automatically set to the appropriate device-specific read-only value. For SS/H
hardware, the only valid ChannelSkew value is zero. For some vendors,
ChannelSkewMode is automatically set to Manual if you first set ChannelSkew to
a valid value.

Characteristics

Values For SS/H hardware, the only valid value is zero. For scanning hardware, the
value depends on ChannelSkewMode. ChannelSkew is specified in seconds.

See Also Properties
ChannelSkewMode

Usage AI, Common

Access Read/write (depends on ChannelSkewMode value)

Data type Double

Read-only
when running

Yes
11-20

ChannelSkewMode
11ChannelSkewModePurpose Specify how the channel skew is determined

Description For simultaneous sample and hold (SS/H) hardware, ChannelSkewMode is None.
For scanning hardware, ChannelSkewMode can be Minimum, Equisample, or
Manual (Keithley and National Instruments only). SS/H hardware includes
Agilent Technologies devices and sound cards, while scanning hardware
includes most Measurement Computing, Keithley, and NI boards. Note that
some supported boards from these vendors are SS/H, such as ComputerBoard’s
DAS4020/12.

If ChannelSkewMode is Minimum, then the minimum channel skew supported by
the hardware is used. Some vendors refer to this as burst mode. If
ChannelSkewMode is Equisample, the channel skew is given by [(sampling
rate)(number of channels)]-1. If ChannelSkewMode is Manual, then you must
specify the channel skew with the ChannelSkew property. For some vendors,
ChannelSkewMode is automatically set to Manual if you first set ChannelSkew to
a valid value.

Note If you want to use the maximum sampling rate of your hardware, you
should set ChannelSkewMode to Equisample.

Characteristics Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes
11-21

ChannelSkewMode
Values Advantech

Agilent Technologies and Sound Cards

Keithley and National Instruments

Measurement Computing

Example Create an analog input object for Keithley’s KPCI-3108 board and add eight
channels.

ai = analoginput('keithley',10);
addchannel(ai,0:7);

Using the default ChannelSkewMode value of Min and the default SampleRate
value of 1000, the corresponding ChannelSkew value is

ai.ChannelSkew
ans =
 1.0000e-005

To use the maximum sampling rate, set ChannelSkewMode to Equisample.

ai.ChannelskewMode = 'Equi';
ai.Samplerate = 100000/8;

{Equisample} The channel skew is given by [(sampling rate)(number of
channels)]-1.

{None} This is the only supported value for SS/H hardware.

{Minimum} The channel skew is set to the minimum supported value.

Equisample The channel skew is given by [(sampling rate)(number of
channels)]-1.

Manual The channel skew is given by ChannelSkew.

{Minimum} The channel skew is set to the minimum supported value.

Equisample The channel skew is given by [(sampling rate)(number of
channels)]-1.
11-22

ChannelSkewMode
See Also Properties
ChannelSkew, SampleRate
11-23

ClockSource
11ClockSourcePurpose Specify the clock used to govern the hardware conversion rate

Description For all supported hardware except Measurement Computing analog output
subsystems, ClockSource can be set to Internal, which specifies that the
acquisition rate is governed by the internal hardware clock.

For subsystems without a hardware clock, you must use software clocking to
govern the sampling rate. Software clocking allows a maximum sampling rate
of 500 Hz and a minimum sampling rate of 0.0002 Hz. An error is returned if
more than 1 sample of jitter is detected. Note that you might not be able to
attain rates over 100 Hz on all systems, especially Windows 9X.

Characteristics

Values Advantech and Measurement Computing

Agilent Technologies

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Internal} The internal hardware clock is used (AI only).

External Externally control the channel clock (AI only).

Software The computer clock is used.

{Internal} The internal hardware clock is used.

External The external sample clock, positive true.

Inverted
External

The external sample clock, negative true.

VXIBus/3 The VXI bus clock, divided by 3, provided by some other
clock master.

VXIBusSample The VXI bus sample clock.
11-24

ClockSource
Keithley

National Instruments

For an analog output object, a ClockSource value of Internal is analogous to
a value of Update.

Sound Cards

See Also Properties
ChannelSkew, SampleRate

{Internal} The internal hardware clock is used.

External Externally control the channel clock. Note that
the ChannelSkew property value is honored.

Software The computer clock is used.

{Internal} The internal hardware clock is used.

External Externally control the channel clock (AO only).

ExternalSample
Ctrl

Externally control the channel clock. This value
overrides the ChannelSkew property value (AI only).

ExternalScan
Ctrl

Externally control the scan clock. This value overrides
the SampleRate property value (AI only).

ExternalSample
AndScanCtrl

Externally control the channel and scan clocks. This
value overrides the ChannelSkew and SampleRate
property values (AI only).

{Internal} The internal hardware clock is used.
11-25

DataMissedFcn
11DataMissedFcnPurpose Specify the M-file callback function to execute when data is missed

Description A data missed event is generated immediately after acquired data is missed.
This event executes the callback function specified for DataMissedFcn. The
default value for DataMissedFcn is daqcallback, which displays the event type
and the device object name.

In most cases, data is missed because:

• The engine cannot keep up with the rate of acquisition.

• The driver wrote new data into the hardware’s FIFO buffer before the
previously acquired data was read. You can usually avoid this problem by
increasing the size of the memory block with the BufferingConfig property.

Data missed event information is stored in the Type and Data fields of the
EventLog property. The Type field value is DataMissed. The Data field value is
RelSample, which is the last sample acquired when the event occurred.

When a data missed event occurs, the analog input object is automatically
stopped.

Characteristics

Values The default value is daqcallback.

See Also Functions
daqcallback

Properties
EventLog

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

No
11-26

DefaultChannelValue
11DefaultChannelValuePurpose Specify the value held by the analog output subsystem

Description DefaultChannelValue specifies the value to write to the analog output (AO)
subsystem when data is finished being output from the engine.

DefaultChannelValue is used only when OutOfDataMode is set to
DefaultValue. This property guarantees that a known value is held by the AO
subsystem if a run-time error occurs. Note that sound cards do not have an
OutOfDataMode property.

Characteristics

Values The default value is zero.

Example Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq',1);
addchannel(ao,0:1);

You can configure ao so that when it stops outputting data, a value of 1 volt is
held for both channels.

ao.OutOfDataMode = 'DefaultValue';
ao.Channel.DefaultChannelValue = 1.0;

See Also Properties
OutOfDataMode

Usage AO, Channel

Access Read/write

Data type Double

Read-only
when running

Yes
11-27

Direction
11DirectionPurpose Specify whether a line is used for input or output

Description When adding hardware lines to a digital I/O object with addline, you must
configure the line direction. The line direction can be In or Out, and is
automatically stored in Direction. If a line direction is In, you can only read a
value from that line. If a line direction is Out, you can write or read a line value.

For line-configurable devices, you can change individual line directions using
Direction. For port-configurable devices, you cannot change individual line
directions.

Characteristics

Values

Example Create the digital I/O object dio and add two input lines and two output lines
to it.

dio = digitalio('nidaq',1);
addline(dio,0:3,{'In','In','Out','Out'});

To configure all lines for output:

dio.Line(1:2).Direction = 'Out';

See Also Functions
addline

Usage DIO, Line

Access Read/write

Data type String

Read-only
when running

Yes

{In} The line can be read from.

Out The line can be read from or written to.
11-28

EventLog
11EventLogPurpose Store information for specific events

Description Eventlog is a structure array that stores information related to specific analog
input (AI) or analog output (AO) events. Event information is stored in the Type
and Data fields of EventLog. Type stores the event type. The logged event types
are shown below.

Timer events, samples available events (AI), and samples output events (AO)
are not logged.

Data stores event-specific information associated with the event type in several
fields. For all stored events, Data contains the RelSample field, which returns
the input or output sample number at the time the event occurred. For the
start, stop, run-time error, and trigger events, Data contains the AbsTime field,
which returns the absolute time (as a clock vector) the event occurred. Other
event-specific fields are included in Data. For a description of these fields, refer
to “Events and Callbacks” in Chapter 5 for analog input objects, “Events and
Callbacks” in Chapter 6 for analog output objects, or the appropriate reference
pages in this chapter.

EventLog can store a maximum of 1000 events. If this value is exceeded, then
the most recent 1000 events are stored. You can use the showdaqevents
function to easily display stored event information.

Event Type Description AI AO

Data missed Data is missed by the engine. √

Input overrange A signal exceeds the hardware input
range.

√

Run-time error A run-time error is encountered. Run-time
errors include timeouts and hardware
errors.

√ √

Start The start function is issued. √ √

Stop The device object stops executing. √ √

Trigger A trigger executes. √ √
11-29

EventLog
Characteristics

Values Values are automatically added as events occur. The default value is an empty
structure array.

Example Create the analog input object ai and add four channels to it.

ai = analoginput('nidaq',1);
chans = addchannel(ai,0:3);

Acquire 1 second of data and display the logged event types.

start(ai)
events = ai.EventLog;
{events.Type}
ans =
 'Start' 'Trigger' 'Stop

To examine the data associated with the trigger event:

events(2).Data
ans =
 AbsTime: [1999 2 12 14 54 52.5456]
 RelSample: 0
 Channel: []
 Trigger: 1

See Also Functions
showdaqevents

Usage AI, AO, Common

Access Read-only

Data type Structure array

Read-only
when running

N/A
11-30

HwChannel
11HwChannelPurpose Specify the hardware channel ID

Description All channels contained by a device object have a hardware channel ID and an
associated MATLAB index. The channel ID is given by HwChannel and the
MATLAB index is given by the Index property. The HwChannel value is defined
when hardware channels are added to a device object with the addchannel
function.

The beginning channel ID value depends on the hardware device. For National
Instruments hardware, channel IDs are zero-based (begin at zero). For Agilent
Technologies hardware and sound cards, channel IDs are one-based (begin at
one).

For scanning hardware, the scan order follows the MATLAB index. Therefore,
the hardware channel associated with index 1 is sampled first, the hardware
channel associated with index 2 is sampled second, and so on. To change the
scan order, you can assign the channel IDs to different indices using
HwChannel.

Characteristics

Values Values are automatically defined when channels are added to the device object
with the addchannel function. The default value is one.

Example Create the analog input object ai for a National Instruments board and add the
first three hardware channels to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:2);

Usage AI, AO, Channel

Access Read/write

Data type Double

Read-only
when running

Yes
11-31

HwChannel
Based on the current configuration, the hardware channels are scanned in
order from 0 to 2. To swap the scan order of channels 0 and 1, you can assign
these channels to the appropriate indices using HwChannel.

ai.Channel(1).HwChannel = 1;
ai.Channel(2).HwChannel = 0;

See Also Functions
addchannel

Properties
Channel, Index
11-32

HwLine
11HwLinePurpose Specify the hardware line ID

Description All lines contained by a digital I/O object have a hardware ID and an associated
MATLAB index. The hardware ID is given by HwLine and the MATLAB index
is given by the Index property. The HwLine value is defined when hardware
lines are added to a digital I/O object with the addline function.

The beginning line ID value depends on the hardware device. For National
Instruments hardware, line IDs are zero-based (begin at zero).

Characteristics

Values Values are automatically defined when lines are added to the digital I/O object
with the addline function. The default value is one.

Example Suppose you create the digital I/O object dio and add four hardware lines to it.

dio = digitalio('nidaq',1);
addline(dio,0:3,'out');

addline automatically assigns the indices 1-4 to these hardware lines. You can
swap the hardware lines associated with index 1 and index 2 with HwLine.

dio.Line(1).HwLine = 1;
dio.Line(2).HwLine = 0;

See Also Functions
addline

Properties
Line, Index

Usage DIO, Line

Access Read/write

Data type Double

Read-only
when running

Yes
11-33

Index
11IndexPurpose Indicate the MATLAB index of a hardware channel or line

Description Every hardware channel (line) contained by a device object has an associated
MATLAB index that is used to reference that channel (line). For example, to
configure property values for an individual channel, you must reference the
channel through the Channel property using the appropriate Index value.
Likewise, to configure property values for an individual line, you must
reference the line through the Line property using the appropriate Index
value.

For channels (lines), you can assign indices automatically with the addchannel
(addline) function. Channel (line) indices always begin at 1 and increase
monotonically up to the number of channels (lines) contained by the device
object. For channels, index assignments can also be made manually with the
addchannel function.

For scanning hardware, the scan order follows the MATLAB index. Therefore,
the hardware channel associated with index 1 is sampled first, the hardware
channel associated with index 2 is sampled second, and so on. To change the
scan order, you can assign the channel IDs to different indices using the
HwChannel or Channel property.

Index provides a convenient way to access channels and lines
programmatically.

Characteristics

Values Values are automatically defined when channels (lines) are added to the device
object with the addchannel (addline) function. The default value is one.

Usage AI, AO, Channel; DIO, Line

Access Read-only

Data type Double

Read-only
when running

N/A
11-34

Index
Example Create the analog input object ai for a sound card and add two hardware
channels to it.

ai = analoginput('winsound');
chans = addchannel(ai,1:2);

You can access the MATLAB indices for these channels with Index.

Index1 = chans(1).Index;
Index2 = chans(2).Index;

See Also Functions
addchannel, addline

Properties
Channel, HwChannel, HwLine, Line
11-35

InitialTriggerTime
11InitialTriggerTimePurpose Indicate the absolute time of the first trigger

Description For all trigger types, InitialTriggerTime records the time when Logging or
Sending is set to On. The absolute time is recorded as a clock vector.

You can return the InitialTriggerTime value with the getdata function, or
with the Data.AbsTime field of the EventLog property.

Characteristics

Values The value is automatically updated when the trigger executes. The default
value is a vector of zeros.

Example Create the analog input object ai for a sound card and add two hardware
channels to it.

ai = analoginput('winsound');
chans = addchannel(ai,1:2);

After starting ai, the trigger immediately executes and the trigger time is
recorded.

start(ai)
abstime = ai.InitialTriggerTime
abstime =
1.0e+003 *
 1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

To convert the clock vector to a more convenient form:

t = fix(abstime);
sprintf('%d:%d:%d', t(4),t(5),t(6))
ans =
13:26:20

Usage AI, AO, Common

Access Read-only

Data type Six-element vector of doubles

Read-only
when running

N/A
11-36

InitialTriggerTime
See Also Functions
getdata

Properties
EventLog, Logging, Sending
11-37

InputOverRangeFcn
11InputOverRangeFcnPurpose Specify the M-file callback function to execute when acquired data exceeds the
valid hardware range

Description An input overrange event is generated immediately after an overrange
condition is detected for any channel group member. This event executes the
callback function specified for InputOverRangeFcn.

An overrange condition occurs when an input signal exceeds the range
specified by the InputRange property. Overrange detection is enabled only if
the analog input object is running and a callback function is specified for
InputOverRangeFcn.

Input overrange event information is stored in the Type and Data fields of the
EventLog property. The Type field value is OverRange. The Data field values are
given below.

Characteristics

Values The default value is an empty string.

See Also Properties
EventLog, InputRange

Data Field Value Description

RelSample The acquired sample number when the event occurred.

Channel The index of the channel that experienced an
overrange signal.

OverRange Indicates if the channel went from overrange to in
range, or from in range to overrange.

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

No
11-38

InputRange
11InputRangePurpose Specify the range of the analog input subsystem

Description InputRange is a two-element vector that specifies the range of voltages that can
be accepted by the analog input (AI) subsystem. You should configure
InputRange so that the maximum dynamic range of your hardware is utilized.

If an input signal exceeds the InputRange value, then an overrange condition
occurs. Overrange detection is enabled only if the analog input object is
running and a value is specified for the InputOverRangeFcn property. For
many devices, the input range is expressed in terms of the gain and polarity.

AI subsystems have a finite number of InputRange values that you can set. If
an input range is specified but does not match a valid range, then the next
highest supported range is automatically selected by the engine. If InputRange
exceeds the range of valid values, then an error is returned. Use the daqhwinfo
function to return the input ranges supported by your board.

Because the engine can set the input range to a value that differs from the
value you specify, you should return the actual input range for each channel
using the get function or the device object display summary. Alternatively, you
can use the setverify function, which sets the InputRange value and then
returns the actual value that is set.

Note If your hardware supports a channel gain list, then you can configure
InputRange for individual channels. Otherwise, InputRange must have the
same value for all channels contained by the analog input object.

You should use InputRange in conjunction with the SensorRange property.
These two properties should be configured such that the maximum precision is
obtained and the full dynamic range of the sensor signal is covered.
11-39

InputRange
Characteristics

Values The default value is supplied by the hardware driver.

Example Create the analog input object ai for a National Instruments board, and add
two hardware channels to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:1);

You can return the input ranges supported by the board with the InputRanges
field of the daqhwinfo function.

out = daqhwinfo(ai);
out.InputRanges
ans =
 -0.0500 0.0500
 -0.5000 0.5000
 -5.0000 5.0000
 -10.0000 10.0000

To configure both channels contained by ai to accept input signals between -10
volts and 10 volts:

ai.Channel.InputRange = [-10 10];

Alternatively, you can use the setverify function.

ActualRange = setverify(ai.Channel,'InputRange',[-10 10]);

See Also Functions
daqhwinfo, setverify

Properties
InputOverRangeFcn, SensorRange, Units, UnitsRange

Usage AI, Channel

Access Read/write

Data type Two-element vector of doubles

Read-only
when running

Yes
11-40

InputType
11InputTypePurpose Specify the analog input hardware channel configuration

Description For National Instruments devices, InputType can be SingleEnded,
Differential, or NonReferencedSingleEnded. For Measurement Computing
devices, InputType can be SingleEnded, or Differential, for Agilent
Technologies devices, InputType can only be Differential. For sound cards,
InputType can only be AC-Coupled.

If channels have been added to a National Instruments or Measurement
Computing analog input object and you change the InputType value, then the
channels are automatically deleted if the hardware reduces the number of
available channels.

Characteristics

Values Advantech and Measurement Computing

The value for InputType on Advantech and MCC boards is always read-only in
MATLAB. For Advantech boards, the setting is made in the Advantech Device
Manager. For Measurement Computing boards, the setting is made in
InstaCal.

Agilent Technologies

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

Differential Channels are configured for differential input.

SingleEnded Channels are configured for single-ended input.

{Differential} Channels are configured for differential input.
11-41

InputType
Keithley

National Instruments

Sound Cards

{Differential} Channels are configured for differential input.

SingleEnded Channels are configured for single-ended input.

{Differential} Channels are configured for differential input.

SingleEnded Channels are configured for single-ended input.

NonReferenced
SingleEnded

This channel configuration is used when the input
signal has its own ground reference, which is tied to the
negative input of the instrumentation amplifier.

{AC-Coupled} The input is coupled so that constant (DC) signal levels
are suppressed.
11-42

Line
11LinePurpose Contain hardware lines added to the device object

Description Line is a vector of all the hardware lines contained by a digital I/O (DIO) object.
Because a newly created DIO object does not contain hardware lines, Line is
initially an empty vector. The size of Line increases as lines are added with the
addline function, and decreases as lines are removed with the delete function.

You can use Line to reference one or more individual lines. To reference a line,
you must know its MATLAB index and hardware ID. The MATLAB index is
given by the Index property, while the hardware ID is given by the HwLine
property.

Characteristics

Values Values are automatically defined when lines are added to the DIO object with
the addline function. The default value is an empty column vector.

Example Create the digital I/O object dio and add four input lines to it.

dio = digitalio('nidaq',1);
addline(dio,0:3,'In');

To set a property value for the first line added (ID = 0), you can reference the
line by its index using the Line property.

line1 = dio.Line(1);
set(line1,'Direction','Out')

See Also Functions
addline, delete

Properties
HwLine, Index

Usage DIO, Common

Access Read/write

Data type Vector of lines

Read-only
when running

Yes
11-43

LineName
11LineNamePurpose Specify a descriptive line name

Description LineName specifies a descriptive name for a hardware line. If a line name is
defined, then you can reference that line by its name. If a line name is not
defined, then the line must be referenced by its index. Line names are not
required to be unique.

You can also define descriptive line names when lines are added to a digital I/
O object with the addline function.

Characteristics

Values The default value is an empty string. To reference a line by name, it must
contain only letters, numbers, and underscores and must begin with a letter.

Example Create the digital I/O object dio and add four hardware lines to it.

dio = digitalio('nidaq',1);
addline(dio,0:3,'out');

To assign a descriptive name to the first line contained by dio:

line1 = dio.Line(1);
set(line1,'LineName','Joe')

You can now reference this line by name instead of index.

set(dio.Joe,'Direction','In')

See Also Functions
addline

Usage DIO, Line

Access Read/write

Data type String

Read-only
when running

Yes
11-44

LogFileName
11LogFileNamePurpose Specify the name of the disk file to which information is logged

Description You can log acquired data, device object property values and event information,
and hardware information to a disk file by setting the LoggingMode property to
Disk or Disk&Memory.

You can specify any value for LogFileName as long as it conforms to the
MATLAB naming conventions: the name cannot start with a number and
cannot contain spaces. If no extension is specified as part of LogFileName, then
daq is used. The default value for LogFileName is logfile.daq.

You can choose whether an output file is overwritten or if multiple log files are
created with the LogToDiskMode property. Setting LogToDiskMode to
Overwrite causes the output file to be overwritten. Setting LogToDiskMode to
Index causes new data files to be created, each with an indexed name based on
the value of LogFileName.

Characteristics

Values The default value is logfile.daq.

See Also Properties
Logging, LoggingMode, LogToDiskMode

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes
11-45

Logging
11LoggingPurpose Indicate whether data is being logged to memory or to a disk file

Description Along with the Running property, Logging reflects the state of an analog input
object. Logging can be On or Off.

Logging is automatically set to On when a trigger occurs. When Logging is On,
acquired data is being stored in memory or to a disk file.

Logging is automatically set to Off when the requested samples are acquired,
an error occurs, or a stop function is issued. When Logging is Off, you can still
preview data with the peekdata function provided Running is On. However,
peekdata does not guarantee that all the requested data is returned.

To guarantee that acquired data contains no gaps, is must be logged to memory
or to a disk file. Data stored in memory is extracted with the getdata function,
while data stored to disk is returned with the daqread function. The
destination for logged data is controlled with the LoggingMode property.

Characteristics

Values

See Also Functions
daqread, getdata, peekdata, stop

Properties
LoggingMode, Running

Usage AI, Common

Access Read-only

Data type String

Read-only
when running

N/A

{Off} Data is not logged to memory or a disk file.

On Data is logged to memory or a disk file.
11-46

LoggingMode
11LoggingModePurpose Specify the destination for acquired data

Description LoggingMode can be set to Disk, Memory, or Disk&Memory. If LoggingMode is set
to Disk, then acquired data (as well as device object and hardware information)
is streamed to a disk file. If LoggingMode is set to Memory, then acquired data
is stored in the data acquisition engine. If LoggingMode is set to Disk&Memory,
then acquired data is stored in the data acquisition engine and is streamed to
a disk file.

When logging to the engine, you must extract the data with the getdata
function. If the data is not extracted, it might be overwritten.

When logging to disk, you can specify the log filename with the LogFileName
property, and you can control the number of log files created with the
LogToDiskMode property. You can return data stored in a disk file to the
MATLAB workspace with the daqread function.

Characteristics

Values

See Also Functions
daqread, getdata

Properties
LogFileName, LogToDiskMode

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

Disk Acquired data is logged to a disk file.

{Memory} Acquired data is logged to memory.

Disk&Memory Acquired data is logged to a disk file and to memory.
11-47

LogToDiskMode
11LogToDiskModePurpose Specify whether data, events, and hardware information are saved to one disk
file or to multiple disk files

Description LogToDiskMode can be set to Overwrite or Index. If LogToDiskMode is set to
Overwrite, then the log file is overwritten each time start is issued. If
LogToDiskMode is set to Index, a different disk file is created each time start
is issued and these rules are followed:

• The first log filename is specified by the initial value of LogFileName.

• If the specified file already exists, it is overwritten and no warning is issued.

• LogFileName is automatically updated with a numeric identifier after each
file is written. For example, if LogFileName is initially specified as data.daq,
then data.daq is the first filename, data01.daq is the second filename, and
so on.

Separate analog input objects are logged to separate files. You can return data
stored in a disk file to the MATLAB workspace with the daqread function. If an
error occurs during data logging, an error message is returned and data logging
is stopped.

Characteristics

Values

See Also Functions
daqread

Properties
LogFileName, LoggingMode

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

Index Multiple log files are written, each with an indexed
filename based on the LogFileName property.

{Overwrite} The log file is overwritten.
11-48

ManualTriggerHwOn
11ManualTriggerHwOnPurpose Specify that the hardware device starts when a manual trigger is issued

Description ManualTriggerHwOn can be set to Start or Trigger. If ManualTriggerHwOn is
Start, then the hardware device associated with your device object starts
running after you issue the start function. If ManualTriggerHwOn is Trigger,
then the hardware device associated with your device object starts running
after you execute a manual trigger with the trigger function. You can use
trigger only when you configure the TriggerType property to Manual.

You should configure ManualTriggerHwOn to Trigger when you want to
synchronize the input and output of data, or you require more control over
when your hardware starts. Note that you cannot use peekdata or acquire
pretrigger data when you use this value. Additionally, you should not use this
value with repeated triggers because the subsequent behavior is undefined.

Characteristics

Values

Example Create the analog input object ai and the analog output object ao for a sound
card and add two channels to each device object.

ai = analoginput('winsound');
addchannel(ai,1:2);
ao = analogoutput('winsound');
addchannel(ao,1:2);

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Start} Start the hardware after the start function is issued.

Trigger Start the hardware after the trigger function is issued.
11-49

ManualTriggerHwOn
To operate the sound card in full duplex mode, and to minimize the time
between when ai starts and ao starts, you configure ManualTriggerHwOn to
Trigger for ai and TriggerType to Manual for both ai and ao.

set([ai ao],'TriggerType','Manual')
ai.ManualTriggerHwOn = 'Trigger';

The analog input and analog output hardware devices will both start after you
issue the trigger function. For a detailed example that uses
ManualTriggerHwOn, refer to “Starting Multiple Device Objects” on page 6-37.

See Also Functions
peekdata, start, trigger

Properties
TriggerType
11-50

MaxSamplesQueued
11MaxSamplesQueuedPurpose Indicate the maximum number of samples that can be queued in the engine

Description MaxSamplesQueued indicates the maximum number of samples allowed in the
analog output queue. The default value is calculated by the engine, and is
based on the memory resources of your system. You can override the default
value of MaxSamplesQueued with the daqmem function.

The value of MaxSamplesQueued can affect the behavior of putdata. For
example, if the queued data exceeds the value of MaxSamplesQueued, then
putdata becomes a blocking function until there is enough space in the queue
to add the additional data.

Characteristics

Values The value is calculated by the data acquisition engine.

See Also Functions
daqmem, putdata

Usage AO, Common

Access Read-only

Data type Double

Read-only
when running

N/A
11-51

Name
11NamePurpose Specify a descriptive name for the device object

Description When a device object is created, a descriptive name is automatically generated
and stored in Name. This name is produced by concatenating the name of the
adaptor, the device ID, and the device object type. You can change the value of
Name at any time.

Characteristics

Values The value is defined after the device object is created.

Example Create the analog input object ai for a sound card.

ai = analoginput('winsound');

The descriptive name for ai is given by

ai.Name
ans =
winsound0-AI

Usage AI, AO, DIO, Common

Access Read/write

Data type String

Read-only
when running

No
11-52

NativeOffset
11NativeOffsetPurpose Indicate the offset to use when converting between the native data format and
doubles

Description NativeOffset, along with NativeScaling, is used to convert data between the
native hardware format and doubles.

For analog input objects, you return native data from the engine with the
getdata function. Additionally, if you log native data to a .daq file, then you
can read back that data using the daqread function. The formula for converting
from native data to doubles is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the
putdata function. The formula for converting from doubles to native data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the daqhwinfo
function. Note that the NativeScaling value for a given channel might change
if you change its InputRange (AI) or OutputRange (AO) property value.

You might want to return or queue data in native format to conserve memory
and to increase data acquisition or data output speed.

Characteristics

Values The default value is device-specific.

Example Create the analog input object ai for a National Instruments board, and add
eight channels to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:7);

Usage AI, AO, Channel

Access Read-only

Data type Double

Read-only
when running

N/A
11-53

NativeOffset
Start ai, collect one second of data for each channel, and extract the data from
the engine using the native format of the device.

start(ai)
nativedata = getdata(ai,1000,'native');

You can return the native data type of the board with the daqhwinfo function.

out = daqhwinfo(ai);
out.NativeDataType
ans =
int16

Convert the data to doubles using the NativeScaling and NativeOffset
properties.

scaling = get(ai.Channel(1),'NativeScaling');
offset = get(ai.Channel(1),'NativeOffset');
data = double(nativedata)*scaling + offset;

See Also Functions
daqhwinfo, daqread, getdata, putdata

Properties
InputRange, NativeScaling, OutputRange
11-54

NativeScaling
11NativeScalingPurpose Indicate the scaling to use when converting between the native data format
and doubles

Description NativeScaling, along with NativeOffset, is used to convert data between the
native hardware format and doubles.

For analog input objects, you return native data from the engine with the
getdata function. Additionally, if you log native data to a .daq file, then you
can read back that data using the daqread function. The formula for converting
from native data to doubles is

doubles data = (native data)(native scaling) + native offset

For analog output objects, you queue native data in the engine with the
putdata function. The formula for converting from doubles to native data is

native data = (doubles data)(native scaling) + native offset

You return the native data type of your hardware device with the daqhwinfo
function. Note that the NativeScaling value for a given channel might change
if you change its InputRange (AI) or OutputRange (AO) property value.

You might want to return or queue data in native format to conserve memory
and to increase data acquisition or data output speed.

Characteristics

Values The default value is device-specific.

See Also Functions
daqhwinfo, daqread, getdata, putdata

Properties
InputRange, NativeOffset, OutputRange

Usage AI, AO, Channel

Access Read-only

Data type Double

Read-only
when running

N/A
11-55

OutputRange
11OutputRangePurpose Specify the range of the analog output hardware subsystem

Description OutputRange is a two-element vector that specifies the range of voltages that
can be output by the analog output (AO) subsystem. You should configure
OutputRange so that the maximum dynamic range of your hardware is utilized.
For many devices, the output range is expressed in terms of the gain and
polarity.

AO subsystems have a finite number of OutputRange values that you can set.
If an output range is specified but does not match a valid range, then the next
highest supported range is automatically selected by the engine. If
OutputRange exceeds the range of valid values, then an error is returned. Use
the daqhwinfo function to return the output ranges supported by your board.

Because the engine can set the output range to a value that differs from the
value you specify, you should return the actual output range for each channel
using the get function or the device object display summary. Alternatively, you
can use the setverify function, which sets the OutputRange value and then
returns the actual value that is set.

Characteristics

Values The default value is determined by the hardware driver.

Example Create the analog output object ao for a National Instruments board and add
two hardware channels to it.

ao = analogoutput('nidaq',1);
addchannel(ao,0:1);

Usage AO, Channel

Access Read/write

Data type Two-element vector of doubles

Read-only
when running

Yes
11-56

OutputRange
You can return the output ranges supported by the board with the
OutputRanges field of the daqhwinfo function.

out = daqhwinfo(ao);
out.OutputRanges
ans =
 0.0000 10.0000
 -10.0000 10.0000

To configure both channels contained by ao to output signals between -10 volts
and 10 volts:

ao.Channel.OutputRange = [-10 10];

Alternatively, you can use the setverify function to configure and return the
OutputRange value.

ActualRange = setverify(ao.Channel,'OutputRange',[-10 10]);

See Also Functions
daqhwinfo, setverify

Properties
Units, UnitsRange
11-57

Parent
11ParentPurpose Indicate the parent (device object) of a channel or line

Description The parent of a channel (line) is defined as the device object that contains the
channel (line).

You can create a copy of the device object containing a particular channel or
line by returning the value of Parent. You can treat this copy like any other
device object. For example, you can configure property values, add channels or
lines to it, and so on.

Characteristics

Values The value is defined when channels or lines are added to the device object.

Example Create the analog input object ai for a National Instruments board and add
three hardware channels to it.

ai = analoginput('nidaq',1);
chans = addchannel(ai,0:2);

To return the parent for channel 2:

parent = ai.Channel(2).Parent;

parent is an exact copy of ai.

isequal(ai,parent)
ans =
 1

Usage AI, AO, Channel; DIO, Line

Access Read-only

Data type Device object

Read-only
when running

N/A
11-58

Port
11PortPurpose Specify the port ID

Description Hardware lines are often grouped together as a port. Digital I/O subsystems
can consist of multiple ports and typically have eight lines per port. When
adding hardware lines to a digital I/O object with addline, you can specify the
port ID. The port ID is stored in the Port property. If the port ID is not
specified, then the smallest port ID value is automatically used.

Characteristics

Values The port ID is defined when line are added to the digital I/O object with
addline.

Example Create the digital I/O object dio and add two hardware channels to it.

dio = digitalio('nidaq',1);
addline(dio,0:1,'In');

You can use Port property to return the port IDs associated with the lines
contained by dio.

dio.Line.Port
ans =
 [0]
 [0]

See Also Functions
addline

Usage DIO, Line

Access Read-only

Data type Double

Read-only
when running

N/A
11-59

RepeatOutput
11RepeatOutputPurpose Specify the number of additional times queued data is output

Description To send data to an analog output subsystem, it must first be queued in the data
acquisition engine with the putdata function. If you want to continuously
output the same data, you can use multiple calls to putdata. However, because
each putdata call consumes memory, a long output sequence can quickly bring
your system to halt.

As an alternative to putdata, you can continuously output previously queued
data using RepeatOutput. Because RepeatOutput requeues the data,
additional memory resources are not consumed. While the data is being output,
you cannot add additional data to the queue.

Characteristics

Values The default value is zero.

Example Create the analog output object ao for a sound card and add one channel to it.

ao = analogoutput('winsound');
chans = addchannel(ao,1);

To queue one second of data:

data = sin(linspace(0,10,8000))';
putdata(ao,data)

To continuously output data for 10 seconds:

set(ao,'RepeatOutput',9)

See Also Functions
putdata

Usage AO, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-60

Running
11RunningPurpose Indicate whether the device object is running

Description Along with the Logging or Sending property, Running reflects the state of an
analog input or analog output object. Running can be On or Off.

Running is automatically set to On once the start function is issued. When
Running is On, you can acquire data from an analog input device or send data
to an analog output device after the trigger occurs. For digital I/O objects,
Running is typically used to indicate if time-based events are being generated.

Running is automatically set to Off once the stop function is issued, the
specified data is acquired or sent, or a run-time error occurs. When Running is
Off, you cannot acquire or send data. However, you can acquire one sample
with the getsample function, or send one sample with the putsample function.

Characteristics

Values

See Also Functions
getsample, putsample, start

Properties
Logging, Sending

Usage AI, AO, DIO, Common

Access Read-only

Data type String

Read-only
when running

N/A

{Off} The device object is not running.

On The device object is running.
11-61

RuntimeErrorFcn
11RuntimeErrorFcnPurpose Specify the M-file callback function to execute when a run-time error occurs

Description A run-time error event is generated immediately after a run-time error occurs.
This event executes the callback function specified for RuntimeErrorFcn.
Additionally, a toolbox error message is automatically displayed to the
MATLAB workspace. If an error occurs that is not explicitly handled by the
toolbox, then the hardware-specific error message is displayed.

The default value for RunTimeErrorFcn is daqcallback, which displays the
event type, the time the event occurred, and the device object name along with
the error message.

Run-time error event information is stored in the Type and Data fields of the
EventLog property. The Type field value is Error. The Data field values are
given below.

Run-time errors include hardware errors and timeouts. Run-time errors do not
include configuration errors such as setting an invalid property value.

Characteristics

Values The default value is daqcallback.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number when
the event occurred.

String The descriptive error message.

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

No
11-62

RuntimeErrorFcn
See Also Functions
daqcallback

Properties
EventLog, Timeout
11-63

SampleRate
11SampleRatePurpose Specify the per-channel rate at which analog data is converted to digital data,
or digital data is converted to analog data

Description SampleRate specifies the per-channel rate (in samples/second) that an analog
input (AI) or analog output (AO) subsystem converts data. AI subsystems
convert analog data to digital data, while AO subsystems convert digital data
to analog data.

AI and AO subsystems have a finite (though often large) number of valid
sampling rates. If you specify a sampling rate that does not match one of the
valid values, the data acquisition engine automatically selects the nearest
available sampling rate.

Because the engine can set the sampling rate to a value that differs from the
value you specify, you should return the actual sampling rate using the get
function or the device object display summary. Alternatively, you can use the
setverify function, which sets the SampleRate value and then returns the
actual value that is set. To find out the range of sampling rates supported by
your board, use the propinfo function. Additionally, because the actual
sampling rate depends on the number of channels contained by the device
object and the ChannelSkew property value (AI only), SampleRate should be the
last property you set before starting the device object.

Characteristics

Values The default value is obtained from the hardware driver.

Usage AI, AO, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-64

SampleRate
Example Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

You can find out the range of valid sampling rates with the ConstraintValue
field of the propinfo function.

rates = propinfo(ai,'SampleRate');
rates.ConstraintValue
ans =
 8000 48000

To configure the per-channel sampling rate to 48 kHz:

set(ai,'SampleRate',48000)

Alternatively, you can use the setverify function to configure and return the
SampleRate value.

ActualRate = setverify(ai,'SampleRate',48000);

See Also Functions
propinfo, setverify

Properties
ChannelSkew
11-65

SamplesAcquired
11SamplesAcquiredPurpose Indicate the number of samples acquired per channel

Description SamplesAcquired is continuously updated to reflect the current number of
samples acquired by an analog input object. It is reset to zero after a start
function is issued.

Use the SamplesAvailable property to find out how many samples are
available to be extracted from the engine.

Characteristics

Values The value is continuously updated to reflect the current number of samples
acquired. The default value is zero.

See Also Functions
start

Properties
SamplesAvailable

Usage AI, Common

Access Read-only

Data type Double

Read-only
when running

N/A
11-66

SamplesAcquiredFcn
11SamplesAcquiredFcnPurpose Specify the M-file callback function to execute every time a predefined number
of samples is acquired for each channel group member

Description A samples acquired event is generated immediately after the number of
samples specified by the SamplesAcquiredFcnCount property is acquired for
each channel group member. This event executes the callback function
specified for SamplesAcquiredFcn.

You should use SamplesAcquiredFcn if you must access each sample that is
acquired. If you do not have this requirement, you might want to use the
TimerFcn property.

Samples acquired event information is not stored in the EventLog property.

Characteristics

Values The default value is an empty string.

See Also Properties
EventLog, SamplesAcquiredFcnCount, TimerFcn

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

No
11-67

SamplesAcquiredFcnCount
11SamplesAcquiredFcnCountPurpose Specify the number of samples to acquire for each channel group member
before a samples acquired event is generated

Description A samples acquired event is generated immediately after the number of
samples specified by SamplesAcquiredFcnCount is acquired for each channel
group member. This event executes the callback function specified by the
SamplesAcquiredFcn property.

Characteristics

Values The default value is 1024.

See Also Properties
SamplesAcquiredFcn

Usage AI, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-68

SamplesAvailable
11SamplesAvailablePurpose Indicate the number of samples available per channel in the engine

Description For analog input (AI) objects, SamplesAvailable indicates the number of
samples that can be extracted from the engine for each channel group member
with the getdata function. For analog output (AO) objects, SamplesAvailable
indicates the number of samples that have been queued with the putdata
function, and can be sent (output) to each channel group member.

After data has been extracted (AI) or output (AO), the SamplesAvailable value
is reduced by the appropriate number of samples. For AI objects,
SamplesAvailable is reset to zero after a start function is issued.

For AI objects, use the SamplesAcquired property to find out how many
samples have been acquired since the start function was issued. For AO
objects, use the SamplesOutput property to find out how many samples have
been output since the start function was issued.

Characteristics

Values The value is automatically updated based on the number of samples acquired
(analog input) or sent (analog output). The default value is zero.

See Also Functions
start

Properties
SamplesAcquired, SamplesOutput

Usage AI, AO, Common

Access Read-only

Data type Double

Read-only
when running

N/A
11-69

SamplesOutput
11SamplesOutputPurpose Indicate the number of samples output per channel from the engine

Description SamplesOutput is continuously updated to reflect the current number of
samples output by an analog output object. It is reset to zero after the device
objects stops and data has been queued with the putdata function.

Use the SamplesAvailable property to find out how many samples are
available to be output from the engine.

Characteristics

Values The value is continuously updated to reflect the current number of samples
output. The default value is zero.

See Also Functions
putdata

Properties
SamplesAvailable

Usage AO, Common

Access Read-only

Data type Double

Read-only
when running

N/A
11-70

SamplesOutputFcn
11SamplesOutputFcnPurpose Specify the M-file callback function to execute every time a predefined number
of samples is output for each channel group member

Description A samples output event is generated immediately after the number of samples
specified by the SamplesOutputFcnCount property is output for each channel
group member. This event executes the callback function specified for
SamplesOutputFcn.

Samples output event information is not stored in the EventLog property.

Characteristics

Values The default value is an empty string.

See Also Properties
EventLog, SamplesOutputFcnCount

Usage AO, Common

Access Read/write

Data type String

Read-only
when running

No
11-71

SamplesOutputFcnCount
11SamplesOutputFcnCountPurpose Specify the number of samples to output for each channel group member before
a samples output event is generated

Description A samples output event is generated immediately after the number of samples
specified by SamplesOutputFcnCount is output for each channel group member.
This event executes the callback function specified by the SamplesOutputFcn
property.

Characteristics

Values The default value is 1024.

See Also Properties
SamplesOutputFcn

Usage AO, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-72

SamplesPerTrigger
11SamplesPerTriggerPurpose Specify the number of samples to acquire for each channel group member for
each trigger that occurs

Description SamplesPerTrigger specifies the number of samples to acquire for each analog
input channel group member for each trigger that occurs. If
SamplesPerTrigger is set to Inf, then the analog input object continually
acquires data until a stop function is issued or an error occurs.

The default value of SamplesPerTrigger is calculated by the data acquisition
engine such that one second of data is acquired. This calculation is based on the
value of SampleRate.

Characteristics

Values The default value is set by the engine such that one second of data is acquired.

Example Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

By default, a one second acquisition in which 8000 samples are acquired for
each channel is defined. To define a two second acquisition at the same
sampling rate:

set(ai,'SamplesPerTrigger',16000)

See Also Functions
stop

Properties
SampleRate

Usage AI, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-73

Sending
11SendingPurpose Indicate whether data is being sent to the hardware device

Description Along with the Running property, Sending reflects the state of an analog output
object. Sending can be On or Off.

Sending is automatically set to On when a trigger occurs. When Sending is On,
queued data is being output to the analog output subsystem.

Sending is automatically set to Off when the queued data has been output, an
error occurs, or a stop function is issued. When Sending is Off, data is not
being output to the analog output subsystem although you can output a single
sample with the putsample function.

Characteristics

Values

See Also Functions
putsample

Properties
Running

Usage AO, Common

Access Read-only

Data type String

Read-only
when running

N/A

{Off} Data is not being sent to the analog output hardware.

On Data is being sent to the analog output hardware.
11-74

SensorRange
11SensorRangePurpose Specify the range of data you expect from your sensor

Description You use SensorRange to scale your data to reflect the range you expect from
your sensor. You can find the appropriate sensor range from your sensor’s
specification sheet. For example, an accelerometer might have a sensor range
of ±5 volts, which corresponds to ±50 g’s (1 g = 9.80 m/s/s).

The data is scaled while it is extracted from the engine with the getdata
function according to the formula

scaled value = (A/D value)(units range)/(sensor range)

The A/D value is constrained by the InputRange property, which reflects the
gain and polarity of your hardware channels. The units range is given by the
UnitsRange property.

Characteristics

Values The default value is determined by the default value of the InputRange
property.

See Also Functions
getdata

Properties
InputRange, Units, UnitsRange

Usage AI, Channel

Access Read/write

Data type Two-element vector of doubles

Read-only
when running

No
11-75

StartFcn
11StartFcnPurpose Specify the M-file callback function to execute just before the device object
starts running

Description A start event is generated immediately after the start function is issued. This
event executes the callback function specified for StartFcn. When the callback
function has finished executing, Running is automatically set to On and the
device object and hardware device begin executing. Note that the device object
is not started if an error occurs while executing the callback function.

Start event information is stored in the Type and Data fields of the EventLog
property. The Type field value is Start. The Data field values are given below.

Characteristics

Values The default value is an empty string.

See Also Functions
start

Properties
EventLog, Running

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number when
the event occurred.

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

No
11-76

StopFcn
11StopFcnPurpose Specify the M-file callback function to execute just after the device object stops
running

Description A stop event is generated immediately after the device object and hardware
device stop executing. This occurs when

• A stop function is issued.

• For analog input (AI) objects, the requested number of samples to acquire
was reached or data was missed. For analog output (AO) objects, the
requested number of samples to output was reached.

• A run-time error occurred.

A stop event executes the callback function specified for StopFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after the device object and hardware device stop, and the
Running property is set to Off.

Stop event information is stored in the Type and Data fields of the EventLog
property. The Type field value is Stop. The Data field values are given below.

Characteristics

Values The default value is an empty string.

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number when
the event occurred.

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

No
11-77

StopFcn
See Also Functions
stop

Properties
EventLog, Running
11-78

Tag
11TagPurpose Specify a device object label

Description Tag provides a means to identify device objects with a label. Using the daqfind
function and the Tag value, you can identify and retrieve a device object that
was cleared from the MATLAB workspace.

Characteristics

Values The default value is an empty string.

Example Create the analog input object ai for a sound card and add two channels to it.

ai = analoginput('winsound');
addchannel(ai,1:2);

Assign ai a label using Tag.

set(ai,'Tag','Sound')

If ai is cleared from the workspace, you can use daqfind and the Tag value to
identify and retrieve the device object.

clear ai
aicell = daqfind('Tag','Sound');
ai = aicell{1};

See Also Functions
daqfind

Usage AI, AO, DIO, Common

Access Read/write

Data type String

Read-only
when running

No
11-79

Timeout
11TimeoutPurpose Specify an additional waiting time to extract or queue data

Description The Timeout value (in seconds) is added to the time required to extract data
from the engine or queue data to the engine. Because data is extracted with the
getdata function, and queued with the putdata function, Timeout is associated
only with these two “blocking” functions.

If the requested data is not extracted or queued after waiting the required time,
then a timeout condition occurs and control is immediately returned to
MATLAB. A timeout is one of the conditions for stopping an acquisition. When
a timeout occurs, the callback function specified by RuntimeErrorFcn is called.

Timeout is not associated with hardware timeout conditions. Possible
hardware timeout conditions include

• Triggering on a voltage level and that level never occurs

• Externally clocking an acquisition and the external clock signal never occurs

• Losing the hardware connection

To check for hardware timeouts, you might need to poll the appropriate
property value.

Characteristics

Values The default value is one second.

See Also Functions
getdata, putdata

Properties
RunTimeErrorFcn

Usage AI, AO, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-80

TimerFcn
11TimerFcnPurpose Specify the M-file callback function to execute whenever a predefined period of
time passes

Description A timer event is generated whenever the time specified by the TimerPeriod
property passes. This event executes the callback function specified for
TimerFcn. Time is measured relative to when the device object starts running.

Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. For example, a common application for
timer events is to display data. However, because displaying data is a
CPU-intensive task, some of these events can be dropped. To guarantee that
events are not dropped, you might want to use the SamplesAcquiredFcn
property (analog input) or the SamplesOutputFcn property (analog output). For
digital I/O objects, timer events are typically used to update and display the
state of the device object.

Timer event information is not stored in the EventLog property.

Characteristics

Values The default value is an empty string.

See Also Properties
EventLog, SamplesAcquiredFcn, SamplesOutputFcn, TimerPeriod

Usage AI, AO, DIO, Common

Access Read/write

Data type String

Read-only
when running

No
11-81

TimerPeriod
11TimerPeriodPurpose Specify the period of time between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the callback
function specified for TimerFcn is called. Time is measured relative to when the
hardware device starts running.

Some timer events might not be processed if your system is significantly slowed
or if the TimerPeriod value is too small. For example, a common application for
timer events is to display data. However, because displaying data is a
CPU-intensive task, some of these events might be dropped.

Characteristics

Values The default value is 0.1 second.

See Also Properties
TimerFcn

Usage AI, AO, DIO, Common

Access Read/write

Data type Double

Read-only
when running

No
11-82

TriggerFcn
11TriggerFcnPurpose Specify the M-file callback function to execute when a trigger occurs

Description A trigger event is generated immediately after a trigger occurs. This event
executes the callback function specified for TriggerFcn. Under most
circumstances, the callback function is not guaranteed to complete execution
until sometime after Logging is set to On for analog input (AI) objects, or
Sending is set to On for analog output (AO) objects.

Trigger event information is stored in the Type and Data fields of the EventLog
property. The Type field value is Trigger. The Data field values are given
below.

Characteristics

Values The default value is an empty string.

See Also Functions
trigger

Properties
EventLog, Logging

Data Field Value Description

AbsTime The absolute time (as a clock vector) the event
occurred.

RelSample The acquired (AI) or output (AO) sample number when
the event occurred.

Channel The index number for each input channel serving as a
trigger source (AI only).

Trigger The trigger number (AI only).

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

No
11-83

TriggerChannel
11TriggerChannelPurpose Specify the channel serving as the trigger source

Description TriggerChannel specifies the channel serving as the trigger source. The trigger
channel must be specified before the trigger type. You might need to configure
the TriggerCondition and TriggerConditionValue properties in conjunction
with TriggerChannel.

For all supported vendors, if TriggerType is Software, then you must acquire
data from the channel being used for the trigger source. For National
Instruments hardware, if TriggerType is HwAnalogChannel, then
TriggerChannel must be the first element of the channel group. The exception
is if you are using the PCI-6110 or PCI-6111 board. In this case, you can specify
any channel for the TriggerChannel value.

Characteristics

Values The default value is an empty vector.

Example Create the analog input object ai, add two channels, and define the trigger
source as channel 2.

ai = analoginput('winsound');
ch = addchannel(ai,1:2);
set(ai,'TriggerChannel',ch(2))
set(ai,'TriggerType','Software')

See Also Properties
TriggerCondition, TriggerConditionValue, TriggerType

Usage AI, Common

Access Read/write

Data type Vector of channels

Read-only
when running

Yes
11-84

TriggerCondition
11TriggerConditionPurpose Specify the condition that must be satisfied before a trigger executes

Description The available trigger conditions depend on the value of TriggerType. If
TriggerType is Immediate or Manual, the only available TriggerCondition is
None. If TriggerType is Software, then TriggerCondition can be Rising,
Falling, Leaving, or Entering. These trigger conditions require one or more
voltage values to be specified for the TriggerConditionValue property.

Based on the hardware you are using, additional trigger conditions might be
available.

Characteristics

Values All Supported Hardware
The following trigger condition is used when TriggerType is Immediate or
Manual.

The following trigger conditions are available when TriggerType is Software.

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

{None} No trigger condition is required.

{Rising} The trigger occurs when the signal has a positive slope
when passing through the specified value.

Falling The trigger occurs when the signal has a negative slope
when passing through the specified value.

Leaving The trigger occurs when the signal leaves the specified
range of values.

Entering The trigger occurs when the signal enters the specified
range of values.
11-85

TriggerCondition
Agilent Technologies
The following trigger conditions are available when TriggerType is HwDigital.

The following trigger conditions are available when TriggerType is HwAnalog.

Note that when TriggerType is HwAnalog, the trigger condition values are all
specified as two-element vectors. Setting two trigger levels prevents the
module from triggering repeatedly because of a noisy signal.

{PositiveEdge} The trigger occurs when the positive (rising) edge of a
digital signal is detected.

NegativeEdge The trigger occurs when the negative (falling) edge of
a digital signal is detected.

{Rising} The trigger occurs when the analog signal has a positive
slope when passing through the specified range of
values.

Falling The trigger occurs when the analog signal has a
negative slope when passing through the specified range
of values.

Leaving The trigger occurs when the analog signal leaves the
specified range of values.

Entering The trigger occurs when the analog signal enters the
specified range of values.
11-86

TriggerCondition
Keithley
The following trigger conditions are available when TriggerType is HwDigital.

To utilize simultaneous gated and triggered acquisition, set the analog input
gating to 8254 Gate in the DriverLINX Configuration Panel Analog Input
subsystem, and use GateHigh and HwDigital triggering through the TGIN
connection pin.

Measurement Computing
The following trigger conditions are available when TriggerType is HwDigital.

{PositiveEdge} The trigger occurs when the positive (rising) edge of
the digital signal is detected.

NegativeEdge The trigger occurs when the negative (falling) edge of
the digital signal is detected.

GateHigh Gated acquisition on a TTL high level on TGIN or the
8254 gate input. Note that gated acquisition mode
ignores all stop trigger properties

GateLow Gated acquisition on a TTL low level on TGIN. This
option is invalid and causes an error if the device's
analog input gating is set to 8254 Gate in the
DriverLINX Configuration Analog Input Subsystem
panel.

GateHigh The trigger occurs as long as the digital signal is high.

GateLow The trigger occurs as long as the digital signal is low.

TrigHigh The trigger occurs when the digital signal is high.

TrigLow The trigger occurs when the digital signal is low.

TrigPosEdge The trigger occurs when the positive (rising) edge of
the digital signal is detected.

{TrigNegEdge} The trigger occurs when the negative (falling) edge of
the digital signal is detected.
11-87

TriggerCondition
The following trigger conditions are available when TriggerType is HwAnalog.

{TrigAbove} The trigger occurs when the analog signal makes a
transition from below the specified value to above.

TrigBelow The trigger occurs when the analog signal makes a
transition from above the specified value to below.

GateNegHys The trigger occurs when the analog signal is more
than the specified high value. The acquisition stops if
the analog signal is less than the specified low value.

GatePosHys The trigger occurs when the analog signal is less than
the specified low value. The acquisition stops if the
analog signal is more than the specified high value.

GateAbove The trigger occurs as long as the analog signal is more
than the specified value.

GateBelow The trigger occurs as long as the analog signal is less
than the specified value.

GateInWindow The trigger occurs as long as the analog signal is
within the specified range of values.

GateOutWindow The trigger occurs as long as the analog signal is
outside the specified range of values.
11-88

TriggerCondition
National Instruments
The following trigger condition is used when TriggerType is HwDigital.

The following trigger conditions are available when TriggerType is
HwAnalogChannel or HwAnalogPin.

See Also Properties
TriggerChannel, TriggerConditionValue, TriggerType

{None} No trigger condition is required.

{AboveHighLevel} The trigger occurs when the analog signal is above
the specified value.

BelowLowLevel The trigger occurs when the analog signal is below
the specified value.

InsideRegion The trigger occurs when the analog signal is inside
the specified region.

LowHysteresis The trigger occurs when the analog signal is less
than the specified low value with hysteresis given by
the specified high value.

HighHysteresis The trigger occurs when the analog signal is greater
than the specified high value with hysteresis given
by the specified low value.
11-89

TriggerConditionValue
11TriggerConditionValuePurpose Specify one or more voltage values that must be satisfied before a trigger
executes

Description TriggerConditionValue is used when TriggerType is Software, and is ignored
when TriggerCondition is None.

To execute a software trigger, the values specified for TriggerCondition and
TriggerConditionValue must be satisfied. When TriggerCondition is Rising
or Falling, TriggerConditionValue accepts a single value. When
TriggerCondition is Entering or Leaving, TriggerConditionValue accepts a
two-element vector of values.

Characteristics

Values The default value is zero.

Example Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch = addchannel(ai,1);

The trigger executes when a signal with a negative slope passing through 0.2
volts is detected on channel 1.

set(ai,'TriggerChannel',ch)
set(ai,'TriggerType','Software')
set(ai,'TriggerCondition','Falling')
set(ai,'TriggerConditionValue',0.2)

See Also Properties
TriggerCondition, TriggerType

Usage AI, Common

Access Read/write

Data type Double (or a two-element vector of doubles)

Read-only
when running

Yes
11-90

TriggerDelay
11TriggerDelayPurpose Specify the delay value for data logging

Description You can define both pretriggers and postriggers. Pretriggers are specified with
a negative TriggerDelay value while postriggers are specified with a positive
TriggerDelay value. You can delay a trigger in units of time or samples with
the TriggerDelayUnits property. Pretriggers are not defined for hardware
triggers or when TriggerType is Immediate.

Pretrigger samples are included as part of the total samples acquired per
trigger as specified by the SamplesPerTrigger property. If sample-time pairs
are returned to the workspace with the getdata function, then the pretrigger
samples are identified with negative time values.

Characteristics

Values The default value is zero.

Example Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch = addchannel(ai,1);

Configure ai to acquire 44,100 samples per trigger with 11,025 samples (0.25
seconds) acquired as pretrigger data.

set(ai,'SampleRate',44100)
set(ai,'TriggerType','Manual')
set(ai,'SamplesPerTrigger',44100)
set(ai,'TriggerDelay',-0.25)

See Also Properties
SamplesPerTrigger, TriggerDelayUnits

Usage AI, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-91

TriggerDelayUnits
11TriggerDelayUnitsPurpose Specify the units in which trigger delay data is measured

Description TriggerDelayUnits can be Seconds or Samples. If TriggerDelayUnits is
Seconds, then data logging is delayed by the specified time for each channel
group member. If TriggerDelayUnits is Samples, then data logging is delayed
by the specified number of samples for each channel group member.

The trigger delay value is given by the TriggerDelay property.

Characteristics

Values

See Also Properties
TriggerDelay

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Seconds} The trigger is delayed by the specified number of
seconds.

Samples The trigger is delayed by the specified number of
samples.
11-92

TriggerRepeat
11TriggerRepeatPurpose Specify the number of additional times the trigger executes

Description You can configure a trigger to occur once (one-shot acquisition) or multiple
times. If TriggerRepeat is set to its default value of zero, then the trigger
executes once. If TriggerRepeat is set to a positive integer value, then the
trigger executes the specified number of times. If TriggerRepeat is set to inf
then the trigger executes continuously until a stop function is issued or an
error occurs.

You can quickly evaluate how many triggers have executed by examining the
TriggersExecuted property or by invoking the display summary for the device
object. The display summary is invoked by typing the device object name at the
MATLAB command line.

Characteristics

Values The default value is zero.

See Also Functions
disp, stop

Properties
TriggersExecuted, TriggerType

Usage AI, Common

Access Read/write

Data type Double

Read-only
when running

Yes
11-93

TriggersExecuted
11TriggersExecutedPurpose Indicate the number of triggers that execute

Description You can find out how many triggers executed by returning the value of
TriggersExecuted. The trigger number for each trigger executed is also
recorded by the Data.Trigger field of the EventLog property.

Characteristics

Values The default value is zero.

Example Create the analog input object ai and add one channel to it.

ai = analoginput('winsound');
ch = addchannel(ai,1);

Configure ai to acquire 40,000 samples with five triggers using the default
sampling rate of 8000 Hz.

set(ai,'TriggerRepeat',4)
start(ai)

TriggersExecuted returns the number of triggers executed.

ai.TriggersExecuted
ans =
 5

See Also Properties
EventLog

Usage AI, AO, Common

Access Read-only

Data type Double

Read-only
when running

N/A
11-94

TriggerType
11TriggerTypePurpose Specify the type of trigger to execute

Description TriggerType can be Immediate, Manual, or Software. If TriggerType is
Immediate, the trigger occurs immediately after the start function is issued. If
TriggerType is Manual, the trigger occurs immediately after the trigger
function is issued. If TriggerType is Software, the trigger occurs when the
associated trigger condition is satisfied (AI only).

For a given hardware device, additional trigger types might be available. Some
trigger types require trigger conditions and trigger condition values. Trigger
conditions are specified with the TriggerCondition property, while trigger
condition values are specified with the TriggerConditionValue property.

When a trigger occurs for an analog input object, data logging is initiated and
the Logging property is automatically set to On. When a trigger occurs for an
analog output object, data sending is initiated and the Sending property is
automatically set to On.

Characteristics

Values All Supported Hardware

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Immediate} The trigger executes immediately after start is issued.
Pretrigger data cannot be captured.

Manual The trigger executes immediately after the trigger
function is issued.

Software The trigger executes when the associated trigger
condition is satisfied. Trigger conditions are given by the
TriggerCondition property. (AI only).
11-95

TriggerType
Agilent Technologies

Keithley

Measurement Computing

National Instruments

For 1200 Series hardware, HwDigital is the only device-specific TriggerType
value for analog input subsystems. Analog output subsystems do not support
any device-specific TriggerType values.

HwDigital The trigger source is an external digital signal (AI only).
Pretrigger data cannot be captured.

HwAnalog The trigger source is an external analog signal (AI only).

HwDigitalPos The trigger source is the positive edge of an external
digital signal (AO only).

HwDigitalNeg The trigger source is the negative edge of an external
digital signal (AO only).

HwDigital The trigger source is an external digital signal (AI only).
Pretrigger data cannot be captured.

HwDigital The trigger source is an external digital signal (AI only).
Pretrigger data cannot be captured.

HwAnalog The trigger source is an external analog signal (AI only).

HwDigital The trigger source is the falling edge of an external
digital signal. Pretrigger data cannot be captured.

HwAnalogChannel The trigger source is an external analog signal (AI
only).

HwAnalogPin The trigger source is a low-range external analog
signal (AI only).
11-96

TriggerType
See Also Functions
start, trigger

Properties
Logging, Sending, TriggerCondition, TriggerConditionValue
11-97

Type
11TypePurpose Indicate the device object type, a channel, or a line

Description Type is associated with device objects, channels, and lines. For device objects,
Type can be Analog Input, Analog Output, or Digital I/O. Once a device
object is created, the value of Type is automatically defined.

For channels, the only value of Type is Channel. For lines, the only value of
Type is Line. The value is automatically defined when channels or lines are
added to the device object.

Characteristics

Values Device Objects
For device objects, Type has these possible values:

The value is automatically defined after the device object is created.

Channels and Lines
For channels, the only value of Type is Channel. For lines, the only value of
Type is Line. The value is automatically defined when channels or lines are
added to the device object.

Usage AI, AO, Common, Channel; DIO, Common, Line

Access Read-only

Data type String

Read-only
when running

N/A

Analog Input The device object type is analog input.

Analog Output The device object type is analog output.

Digital IO The device object type is digital I/O.
11-98

Units
11UnitsPurpose Specify the engineering units label

Description Units is a string that specifies the engineering units label to associate with
your data. You should use Units in conjunction with the UnitsRange property.

Characteristics

Values The default value is Volts.

See Also Properties
UnitsRange

Usage AI, AO, Channel

Access Read/write

Data type String

Read-only
when running

No
11-99

UnitsRange
11UnitsRangePurpose Specify the range of data as engineering units

Description You use UnitsRange to scale your data to reflect particular engineering units.

For analog input objects, the data is scaled while it is extracted from the engine
with the getdata function according to the formula

scaled value = (A/D value)(units range)/(sensor range)

The A/D value is constrained by the InputRange property, which reflects the
gain and polarity of your analog input channels. The sensor range is given by
the SensorRange property, which reflects the range of data you expect from
your sensor.

For analog output objects, the data is scaled when it is queued in the engine
with the putdata function according to the formula

scaled value = (original value)(output range)/(units range)

The output range is constrained by the OutputRange property, which specifies
the gain and polarity of your analog output channels.

For both objects, you can also use the Units property to associate a meaningful
label with your data.

Characteristics

Values The default value is determined by the default value of the InputRange or the
OutputRange property.

See Also Functions
getdata, putdata

Properties
InputRange, OutputRange, SensorRange, Units

Usage AI, AO, Channel

Access Read/write

Data type Two-element vector of doubles

Read-only
when running

No
11-100

UserData
11UserDataPurpose Store data that you want to associate with a device object

Description UserData stores data that you want to associate with the device object.

Note that if you return analog input object information to the MATLAB
workspace using the daqread function, the UserData value is not restored.

Characteristics

Values The default value is an empty vector.

Example Create the analog input object ai and add two channels to it.

ai = analoginput('nidaq',1);
addchannel(ai,0:1);

Suppose you want to access filter coefficients during the acquisition. You can
create a structure to store these coefficients, which can then be stored in
UserData.

coeff.a = 1.0;
coeff.b = -1.25;
set(ai,'UserData',coeff)

Usage AI, AO, DIO, Common

Access Read/write

Data type Any type

Read-only
when running

No
11-101

UserData
11-102

12

Device-Specific Property
Reference

This chapter describes all toolbox device-specific properties. Device-specific properties apply only to
hardware devices of a specific type or from a specific vendor. For example, the BitsPerSample
property is supported only for sound cards, while the NumMuxBoards property is supported only for
National Instruments devices. The sections are as follows.

Device-Specific Properties
— By Vendor (p. 12-2)

Contains a series of tables that group device-specific properties by
vendor

Device-Specific Properties
— Alphabetical List
(p. 12-7)

Lists all the device-specific properties alphabetically

12 Device-Specific Property Reference

12-
Device-Specific Properties — By Vendor
This section contains brief descriptions of all toolbox device-specific properties.
The properties are grouped according to these supported vendors:

• Agilent Technologies properties

• Keithley properties

• Measurement Computing properties

• National Instruments properties

• Parallel port properties

• Sound card properties (multi-vendor)

You can display device-specific properties with the set function. The
device-specific properties are displayed after the base properties.

Note Some device-specific property values are not available for all devices.
Refer to your hardware documentation for detailed information about
device-specific behavior.

Getting Command Line Property Help
To get command line property help, you should use the daqhelp function. For
example, to get help for the sound card’s BitsPerSample property

daqhelp BitsPerSample

Note You can use daqhelp without creating a device object.

You can also get property characteristics, such as the default property value,
using the propinfo function. For example, suppose you create the analog input
object ai for a sound card and want to find the default value for the
BitsPerSample property.

ai = analoginput('winsound');
out = propinfo(ai,'BitsPerSample');
out.DefaultValue
2

Device-Specific Properties — By Vendor
ans =
 16

Agilent Technologies Properties
The device-specific Agilent Technologies properties for analog input (AI) and
analog output (AO) objects are given below.

Property Name Description Device
Objects

COLA Specify whether the source constant-level
output is enabled or disabled.

AO

Coupling Specify the input coupling mode. AI

GroundingMode Specify the input channel grounding mode. AI

InputMode Specify the channel input mode. AI

InputSource Specify the input to the A/D converter. AI

RampRate Specify the source ramp-up and ramp-down
rate.

AO

SourceMode Specify the source mode. AO

SourceOutput Specify the source output. AO

Span Specify the measurement bandwidth in Hz. AI, AO

Sum Specify whether the source sum input is
enabled or disabled.

AO
12-3

12 Device-Specific Property Reference

12-
Keithley Properties
The device-specific Keithley properties for analog input (AI) and analog output
(AO) objects are given below.

Property Name Description Device
Objects

OutOfDataMode Specify how the value held by the analog
output subsystem is determined.

AO

StopTrigger
Channel

Specify the analog input channel serving as
a hardware stop trigger source.

AI

StopTrigger
Condition

Specify the condition that must be satisfied
before a stop trigger executes.

AI, AO

StopTrigger
ConditionValue

Specify a value for the stop trigger condition. AI

StopTrigger
Delay

Specify the delay value for a stop trigger. AI

StopTrigger
DelayUnits

Specify the units in which the stop trigger
delay is measured.

AI

StopTrigger
Type

Specify the type of stop trigger to execute. AI

TransferMode Specify how data is transferred from the
data acquisition device to system memory.

AI, AO
4

Device-Specific Properties — By Vendor
Measurement Computing Properties
The device-specific Measurement Computing properties for analog input (AI)
and analog output (AO) objects are given below.

National Instruments Properties
The device-specific National Instruments properties for analog input (AI) and
analog output (AO) objects are given below.

Property Name Description Device
Objects

OutOfDataMode Specify how the value held by the analog
output subsystem is determined

AO

TransferMode Specify how data is transferred from the
data acquisition device to system memory.

AI, AO

Property Name Description Device
Objects

Coupling Specify the input coupling mode. AI

DriveAISenseTo
Ground

Specify if AISENSE is driven to onboard
ground.

AI

NumMuxBoards Specify the number of external multiplexer
devices connected.

AI

OutOfDataMode Specify how the value held by the analog
output subsystem is determined

AO

TransferMode Specify how data is transferred from the
data acquisition device to system memory.

AI, AO
12-5

12 Device-Specific Property Reference

12-
Parallel Port Properties
The device-specific parallel port properties are given below.

Sound Card Properties
The device-specific sound card properties for analog input (AI) and analog
output (AO) objects are given below.

Property Name Description Device
Objects

BiDirectional
Bit

Specify the BIOS control register bit that
determines bidirectional operation.

DIO

PortAddress Indicate the base address of the parallel port. DIO

Property Name Description Device
Objects

BitsPerSample Specify the number of bits the sound card
uses to represent each sample.

AI, AO

StandardSample
Rates

Specify whether the valid sample rates
snap to a small set of standard values, or if
you can set the sample rate to any value
within the allowed bounds.

AI, AO
6

Device-Specific Properties — Alphabetical List
Device-Specific Properties — Alphabetical List
This section contains detailed descriptions of all toolbox device-specific
properties. Each property reference page contains some or all of this
information:

• The property name

• A description of the property

• The property characteristics, including:

- Vendor – the vendors that support the property

- Usage – whether it is a common property, or a channel or line property and
which device objects the property is associated with

Common properties apply to all channels or lines contained by the device
object. Channel (line) properties can be set on a per-channel (per-line)
basis. The device objects supported by the Data Acquisition Toolbox
include analog input (AI), analog output (AO), and digital I/O (DIO)
objects.

- Access – whether the property is read/write or read-only

Read/write property values can be returned with the get command, and
configured with the set command.

Read-only property values can be returned with the get command, but
cannot be configured with the set command.

- Data type – the property data type

The supported data types include action function, double, string, Channel,
Line, and any.

- Read-only when running – whether a property value can be configured
while the device object is running

• Valid property values including the default value

When property values are given by an enumerated list, the default value is
usually indicated by {}. Default values for some properties are calculated by
the data acquisition engine, while others are determined by the hardware
driver. If there are device-specific enumerated values, they are listed
separately.

• An example using the property

• Related properties and functions
12-7

BiDirectionalBit
12BiDirectionalBitPurpose Specify the BIOS control register bit that determines bidirectional operation

Description BiDirectionalBit can be 5, 6, or 7. The default value is 5 because most parallel
port hardware uses bit 5 of the BIOS control register to determine the direction
(input or output) of port 0.

If port 0 is unable to input data, you need to configure the BiDirectionalBit
value to 6 or 7. Typically, you will not know the bit value required by your port,
and some experimentation is required.

Characteristics

Values

Vendor Parallel port

Usage DIO, Common

Access Read/write

Data type Double

Read-only
when running

Yes

{5}, 6, or 7 The BIOS control register bit that determines
bidirectional operation.
12-8

BitsPerSample
12BitsPerSamplePurpose Specify the number of bits the sound card uses to represent each sample

Description BitsPerSample can be 8, 16, or any value between 17 and 32. The specified
number of bits determines the number of unique values a sample can take on.
For example, if BitsPerSample is 8, the sound card represents each sample
with 8 bits. This means that each sample is represented by a number between
0 and 255. If BitsPerSample is 16, the sound card represents each sample with
16 bits. This means that each sample is represented by a number between 0
and 65,535.

For older Sound Blaster cards configured for full duplex operation, you might
not be able to set BitsPerSample to 16 bits for both the analog input and analog
output subsystems. Instead, you need to set one subsystem for 8 bits, and the
other subsystem for 16 bits.

Note To use the high-resolution (greater than 16 bit) capabilities for some
sound cards, you might need to configure BitsPerSample to either 24 or 32
even if your device does not use that number of bits.

Characteristics

Values

Vendor Sound cards

Usage AI, AO, Common

Access Read/write

Data type Double

Read-only
when running

Yes

8, {16}, or
17-32

Represent data with the specified number of bits.
12-9

COLA
12COLAPurpose Specify whether the source constant-level output is enabled or disabled

Description COLA can be Off or On. If COLA is Off, the source constant level output is
disabled. If COLA is ON, the source constant level output is enabled.

For the Option 1D4 single-channel source, the source COLA output is shared
with the source sum input. Only one of these two sources can be enabled at any
one time. For prototype Option 1D4 sources only, one of the two must be
enabled at all times, and the default is for the constant-level output to be
enabled.

Characteristics

Values

Vendor Agilent Technologies

Usage AO, Channel

Access Read/write

Data Type String

Read-only
when running

Yes

{Off} The source constant level output is disabled.

On The source constant level output is enabled.
12-10

Coupling
12CouplingPurpose Specify the input coupling mode

Description Coupling can be DC or AC. If Coupling is DC, the input is connected directly to
the amplifier. If Coupling is AC, a series capacitor is inserted between the input
connector and the amplifier. For source channels, Coupling is generally not
used because it is usually not possible to AC couple the output of a source.

After a hardware reset, Coupling is automatically set to DC.

Characteristics

Values

Vendor Agilent Technologies, National Instruments

Usage AI, Channel

Access Read/write

Data type String

Read-only
when running

Yes

{DC} The input is connected directly to the amplifier.

AC A series capacitor is inserted between the input
connector and the amplifier.
12-11

DriveAISenseToGround
12DriveAISenseToGroundPurpose Specify if AISENSE is driven to onboard ground

Purpose DriveAISenseToGround can be On or Off. If DriveAISenseToGround is Off, then
AISENSE is not driven to onboard ground. If DriveAISenseToGround is On,
then AISENSE is driven to onboard ground. AISENSE serves as the hardware
reference node when channels are configured in nonreferenced single-ended
(NRSE) mode.

Channels are configured with the InputType property. If InputType is
NonReferencedSingleEnded, then the hardware device uses AISENSE for the
negative input of the amplifier, regardless of the DriveAISenseToGround value.
If InputType is Differential or SingleEnded, then the hardware device drives
AISENSE to onboard ground only if DriveAISenseToGround is On.

Characteristics

Values

See Also Properties
InputType

Vendor National Instruments

Usage AI, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Off} Do not drive AISENSE to onboard ground.

On Drive AISENSE to onboard ground.
12-12

GroundingMode
12GroundingModePurpose Specify the input channel grounding mode

Description GroundingMode can be Grounded or Floating. If GroundingMode is Grounded,
the low side of the channel is grounded. If GroundingMode is Floating, the low
side of the channel floats thereby making the input a differential input.
GroundingMode can be set only for input channels. Source channels are never
floating, and are always grounded.

If a smart break-out box is attached to the channel, then the grounding mode
is automatically set to the appropriate value. If a dumb break-out box (or no
break-out box) is attached to the channel, the grounding mode is given by the
GroundingMode value. In this case, no hardware settings are changed and no
errors are generated.

Characteristics

Values

Vendor Agilent Technologies

Usage AI, Channel

Access Read/write

Data type String

Read-only
when running

Yes

{Grounded} The input channel is grounded.

Floating The input channel is floating.
12-13

InputMode
12InputModePurpose Specify the channel input mode

Description InputMode can be set to Voltage, ICP, Charge, Mic, or 200VoltMic. You can set
InputMode to Charge only if a charge break-out box is attached to the specified
channel. Your can set InputMode to Mic or 200VoltMic only if a microphone
break-out box is attached to the specified channel. For each input mode, the
full-scale setting is configured with the InputRange property.

There is no ICP current source inside the E1432 device. Instead, you can attach
a break-out box containing an ICP current source to the input. When this ICP
break-out box is attached, setting InputMode to ICP enables the ICP current
source in the break-out box. If there is no ICP break-out box attached to the
input, then setting InputMode to ICP does nothing.

Note If a channel is not connected to a smart break-out box, then changing
its input mode causes the input mode for all channels within the device to
change. If there is a smart break-out box present, then you can set the input
mode on a per-channel basis.

Characteristics Vendor Agilent Technologies

Usage AI, Channel

Access Read/write

Data Type String

Read-only
when running

Yes
12-14

InputMode
Values

See Also Properties
Coupling, InputRange, InputType

{Voltage} The input mode is set to volts.

ICP The input mode is set to ICP.

Charge The input mode is set to charge-amp.

Mic The input mode is set to microphone.

200VoltMic The input mode is set to microphone with 200 volt
supply turned on.
12-15

InputSource
12InputSourcePurpose Specify the input to the A/D converter

Description For input channels, InputSource can be SwitchBox, CALIN, Ground, and
BOBCALIN. The BOBCALIN value is valid only when a smart break-out box (BoB)
is connected to the input. Smart BoB’s include a charge break-out box or a
microphone break-out box. When a smart break-out box is attached to an
E1432 or E1433 module, additional input modes are available. These
additional input modes are available through the InputMode property.

After a hardware reset, InputSource is automatically set to SwitchBox.

Characteristics

Values

See Also Properties
InputMode

Vendor Agilent Technologies

Usage AI, Channel

Access Read/write

Data Type String

Read-only
when running

Yes

{SwitchBox} Select the front panel connector.

CALIN Select the module’s CALIN line.

Ground Ground the input.

BOBCALIN Select the module’s CALIN line via the CAL connection
in a break-out box.
12-16

NumMuxBoards
12NumMuxBoardsPurpose Specify the number of external multiplexer devices connected

Description NumMuxBoards specifies the number of AMUX-64T multiplexer devices
connected to your hardware. NumMuxBoards can be 0, 1, 2, or 4. If you are using
a 1200 Series board, then NumMuxBoards can only be 0.

Characteristics

Values

Vendor National Instruments

Usage AI, Common

Access Read/write

Data type Double

Read-only
when running

No

{0}, 1, 2, or 4 The number of AMUX-64T multiplexer devices
connected.
12-17

OutOfDataMode
12OutOfDataModePurpose Specify how the value held by the analog output subsystem is determined

Description When queued data is output to the analog output (AO) subsystem, the
hardware typically holds a value. For National Instruments and Measurement
Computing devices, the value held is determined by OutOfDataMode.

OutOfDataMode can be Hold or DefaultValue. If OutOfDataMode is Hold, then
the last value output is held by the AO subsystem. If OutOfDataMode is
DefaultValue, then the value specified by the DefaultChannelValue property
is held by the AO subsystem.

Characteristics

Values

Example Create the analog output object ao and add two channels to it.

ao = analogoutput('nidaq',1);
addchannel(ao,0:1);

You can configure ao so that when queued data is finished being output, a value
of 1 volt is held for both channels.

ao.OutOfDataMode = 'DefaultValue';
ao.Channel.DefaultChannelValue = 1.0;

See Also Properties
DefaultChannelValue

Vendor Keithley, Measurement Computing, National Instruments

Usage AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{Hold} Hold the last output value.

DefaultValue Hold the value specified by DefaultChannelValue.
12-18

PortAddress
12PortAddressPurpose Indicate the base address of the parallel port

Description The PC supports up to three parallel ports that are assigned the labels LPT1,
LPT2, and LPT3. You can use any of these standard ports as long as they use
the usual base addresses, which are (in hex) 378, 278, and 3BC, respectively.

Additional ports, or standard ports not assigned the usual base addresses, are
not accessible by the toolbox. Note that most PCs that support MATLAB will
include a single parallel printer port with base address 378 (LPT1).

Characteristics

Values The value is automatically defined when the object is created.

Example Create a digital I/O object for parallel port LPT1 and return the PortAddress
value.

dio = digitalio('parallel','LPT1');
get(dio,'PortAddress')

ans =
0x378

The returned value indicates that LPT1 uses the usual base address.

Vendor Parallel port

Usage DIO, Common

Access Read only

Data Type String

Read-only
when running

Yes
12-19

RampRate
12RampRatePurpose Specify the source ramp-up and ramp-down rate

Purpose For input channels, RampRate is not generally used. For source channels,
RampRate is usually used to ensure that the source signal starts and stops
smoothly.

Characteristics

Values You can set RampRate to any value between 0 and 100 seconds.

Vendor Agilent Technologies

Usage AO, Channel

Access Read/write

Data Type Double

Read-only
when running

Yes
12-20

SourceMode
12SourceModePurpose Specify the source mode

Description If SourceMode is set to Arbitrary, the host program must provide the data to
use for the arbitrary source signal.

Note that there is no Off source mode. To turn a source channel off, you must
make it inactive. When the source is inactive, it is normally low impedance to
ground. To make the source high impedance, set the SourceOutput property to
Open.

Characteristics

Values

See Also Properties
SourceOutput

Vendor Agilent Technologies

Usage AO, Channel

Access Read/write

Data Type String

Read-only
when running

Yes

{Arbitrary} An arbitrary source signal.
12-21

SourceOutput
12SourceOutputPurpose Specify the source output

Description SourceOutput can be Normal, Grounded, Open, CALOUT, or SRC&CALOUT.

If SourceOutput is Normal, the normal source output is used. This output is
defined by the source mode and other source parameters.

If SourceOutput is Grounded, the source output connector remains grounded
while the source D/A converter is internally connected to the CALOUT line in
the module.

If SourceOutput is Open, the source remains open-circuited even when the
source is started. The impedance on the output is only about 1 kilohm because
the power-fail decay circuit is still connected to the output.

If SourceOutput is CALOUT, the source output is connected to the module’s
internal CALOUT line. This allows the module’s CALOUT line to be driven by
an external signal applied at the source output connector.

If SourceOutput is SRC&CALOUT, the source output is connected to the module’s
internal CALOUT line, and the source D/A converter is also connected to the
CALOUT line. This is a combination of the Grounded and CALOUT values, and is
useful for multimainframe calibration.

Characteristics Vendor Agilent Technologies

Usage AO, Channel

Access Read/write

Data Type String

Read-only
when running

Yes
12-22

SourceOutput
Values {Normal} Normal source output.

Grounded The source output connector remains grounded while
the source D/A converter is internally connected to the
CALOUT line in the module.

Open The source remains open-circuited even when the source
is started.

CALOUT The source output is connected to the module’s internal
CALOUT line.

SRC&CALOUT The source output connector remains grounded while
the source D/A converter is internally connected to the
CALOUT line in the module. The source output is also
connected to the module’s internal CALOUT line.
12-23

Span
12SpanPurpose Specify the measurement bandwidth (in Hz)

Description For an input channel, span specifies the maximum frequency at which valid
alias-protected data is received. Frequencies above this value are filtered out.
For a source channel, Span specifies the maximum frequency at which the
output signal will correctly track the signal that the source is attempting to
generate.

The valid values for Span depend of the current clock frequency. You should set
the clock frequency before setting Span. Normally, the maximum valid span is
the clock frequency divided by 2.56. Valid spans are given by the maximum
span divided by powers of two, and the maximum span divided by five and by
powers of two. The ratio between the span and the maximum span is called the
decimation factor.

For the E1432 module, the maximum number of decimate-by-two passes
allowed is nine. Therefore, the maximum decimation factor is 5.29, and the
minimum valid span is (clock frequency)/(2.56.5.29). If the clock frequency is
larger than 51.2 kHz, then the module is unable to do a decimation factor of
one. In this case, the minimum decimation factor is two and the maximum
valid span is (clock frequency/5.12.

For the E1433 module, the maximum number of decimate-by-two passes
allowed is 12, so the maximum decimation factor is 5.212. Because of limits in
the module’s DSP processor, when the clock frequency is set higher than
102,400 Hz, it is unable to do any decimation. In this case, the only valid span
is (clock frequency)/2.56. If you attempt to use decimation when the clock
frequency is above 102,400 Hz, then an error might occur when the
measurement starts.

For the Option 1D4 source board, the maximum number of decimate-by-two
passes allowed is 16, and the maximum decimation factor is 5.216.

The effective sample rate is defined as the rate at which data is received from
an input or used by a source, and is normally equal to 2.56 times the span. If
the data is oversampled, then the effective sample rate is 5.12 times the span.

If the digital filters in a module have a cutoff that is sharper than 1/2.56, then
some of the frequencies above the maximum span might contain valid
alias-protected data. This is the case with the E1432 and E1433 modules,
which have a top span filter cutoff of (clock frequency)/2.226, which is 23 kHz
12-24

Span
when the clock frequency is 51.2 kHz, 88.3 kHz when the clock frequency is
196.608 kHz. However, Span ignores the extra bandwidth so that the maximum
span is always 1/2.56 times the effective sample rate.

Span applies to an entire E1432 module rather than to one of its channels. After
a hardware reset, each module is automatically set to the maximum legal span.

Characteristics

Values Normally, the maximum valid span is given by the clock frequency divided by
2.56. Valid spans are given by the maximum span divided by powers of two,
and the maximum span divided by five and by powers of two. The value set for
Span automatically updates the SampleRate value.

See Also Properties
SampleRate

Vendor Agilent Technologies

Usage AI, AO, Common

Access Read/write

Data Type Double

Read-only
when running

Yes
12-25

StandardSampleRates
12StandardSampleRatesPurpose Specify whether the valid sample rates snap to a small set of standard values,
or if you can set the sample rate to any value within the allowed bounds

Description StandardSampleRates can be On of Off. If StandardSampleRates is Off, then it
is possible to set the sample rate to any value within the bounds supported by
the hardware. For most sound cards, the lower bound is 8.000 kHz, while the
upper bound is 44.1 kHz. For newer sound cards, an upper bound of 96.0 kHz
might be supported. The specified sample rate is rounded up to the next integer
value.

If StandardSampleRates is On, then the available sample rates snap to a small
set of standard values. The standard values are 8.000 kHz, 11.025 kHz, 22.050
kHz, and 44.100 kHz. If you specify a sampling rate that is within one percent
of a standard value, then the sampling rate snaps to that standard value. If you
specify a sampling rate that is not within one percent of a standard value, then
the sampling rate rounds up to the closest standard value.

Regardless of the StandardSampleRates value, if you specify a sampling rate
that is outside the allowed limits, then an error is returned.

Characteristics

Values

Vendor Sound cards

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{On} The sample rate can be set only to a small set of
standard values.

Off If supported by the hardware, the sample rate can be set
to any value within the allowed bounds, up to a
maximum of 96.0 kHz.
12-26

StopTriggerChannel
12StopTriggerChannelPurpose Specify the analog input channel serving as a hardware stop trigger source

Description StopTriggerChannel defines the channel number to be used for the HwAnalog
setting of the StopTriggerType property. The channel must be a member of the
analog input channel list.

To associate a particular channel with the stop trigger, assign the channel’s
hardware ID number to the property. If you specify a channel object, then an
error is returned.

Characteristics

Values Any defined analog input channel. The default value is an empty vector.

Example Create an analog input object for the Keithley KPCI-3108 board and add eight
channels.

ai = analoginput('keithley',1);
addchannel(ai,0:7);

Stop the acquisition when a falling voltage level of 0.1 volt is detected on the
hardware channel with ID 2.

ai.StopTriggerType='HwAnalog';
ai.StopTriggerChannel = 2;
ai.StopTriggerCondition = 'Falling';
ai.StopTriggerConditionValue = 0.1;

See Also Properties
StopTriggerCondition, StopTriggerConditionValue, StopTriggerDelay,
StopTriggerDelayUnits, StopTriggerType

Vendor Keithley

Usage AI, Common

Access Read/write

Data Type Double

Read-only
when running

Yes
12-27

StopTriggerCondition
12StopTriggerConditionPurpose Specify the condition that must be satisfied before a stop trigger executes

Description StopTriggerCondition can be None, Rising, or Falling. As described below,
the stop trigger condition depends on the value specified for the
StopTriggerType property, which can be HwDigital or HwAnalog.

If StopTriggerCondition is Rising, the trigger executes on the rising edge of
TGIN line (HwDigital), or when the analog input signal rises above the value
given in StopTriggerConditionValue (HwAnalog). If StopTriggerCondition is
Falling, the trigger executes on the falling edge of TGIN line (HwDigital), or
when the analog input signal falls below the value given in
StopTriggerConditionValue (HwAnalog).

If you use stop triggers in conjunction with start triggers, and both trigger
types are HwDigital, then the trigger conditions must be the same for both
triggers (for example, both Rising or both Falling).

Characteristics

Values The following stop trigger condition is used when StopTriggerType is None.

Vendor Keithley

Usage AI, Common

Access Read/write

Data Type String

Read-only
when running

Yes

{None} No stop trigger condition is required.
12-28

StopTriggerCondition
The following stop trigger conditions are used when StopTriggerType is
HwDigital or HwAnalog.

See Also Properties
StopTriggerChannel, StopTriggerConditionValue, StopTriggerDelay,
StopTriggerType

{Rising} Trigger on the rising edge of TGIN line, or when the
analog input signal rises above the value given in
StopTriggerConditionValue.

Falling Trigger on the falling edge of TGIN line, or when the
analog input signal falls below the value given in
StopTriggerConditionValue.
12-29

StopTriggerConditionValue
12StopTriggerConditionValuePurpose Specify a value for the stop trigger condition

Description StopTriggerConditionValue defines the value that must be satisfied before a
stop trigger executes. You use this property only when StopTriggerType is set
to HwAnalog.

Characteristics

Values The default value is 0.

See Also Properties
StopTriggerChannel, StopTriggerCondition, StopTriggerDelay,
StopTriggerType

Vendor Keithley

Usage AI, Common

Access Read/write

Data Type Double

Read-only
when running

Yes
12-30

StopTriggerDelay
12StopTriggerDelayPurpose Specify the delay value for a stop trigger

Description StopTriggerDelay allows the acquisition to continue beyond a hardware stop
trigger event. The property value is interpreted in StopTriggerDelayUnits,
which can be either seconds or samples. StopTriggerDelay must be zero (the
default) or a positive number. Negative (pretrigger) delays are not supported.

Characteristics

Values The default value is 0. Only positive values are permitted. If
StopTriggerDelayUnits is set to Samples, only integer values are allowed.

See Also Properties
StopTriggerDelayUnits, StopTriggerType

Vendor Keithley

Usage AI, Common

Access Read/write

Data Type Double

Read-only
when running

Yes
12-31

StopTriggerDelayUnits
12StopTriggerDelayUnitsPurpose Specify the units in which the stop trigger delay is measured

Description StopTriggerDelayUnits can be Seconds or Samples. If
StopTriggerDelayUnits is Seconds, then data logging is delayed by the
specified time for each channel group member. If StopTriggerDelayUnits is
Samples, then data logging is delayed by the specified number of samples for
each channel group member.

The stop trigger delay value is given by the StopTriggerDelay property.

Characteristics

Values

See Also Properties
StopTriggerDelay

Vendor Keithley

Usage AO, Channel

Access Read/write

Data Type String

Read-only
when running

Yes

{Seconds} The trigger is delayed by the specified number of
seconds.

Samples The trigger is delayed by the specified number of
samples.
12-32

StopTriggerType
12StopTriggerTypePurpose Specify the type of stop trigger to execute

Description StopTriggerType can be None, HwDigital, or HwAnalog. If StopTriggerType is
HwDigital, the acquisition stops on the rising or falling edge of the TGIN input
line as defined by the StopTriggerCondition property. If StopTriggerType is
HwAnalog, the acquisition stops when the channel specified by the
StopTriggerChannel property meets the conditions defined by
StopTriggerCondition and StopTriggerConditionValue.

For both HwDigital and HwAnalog, SamplesPerTrigger is automatically set to
Inf. Therefore, your acquisition will run until the stop trigger is received or the
stop function is issued. You can continue the acquisition beyond the specified
stop trigger by setting StopTriggerDelay to a positive value.

Characteristics

Values

See Also Properties
SamplesPerTrigger, StopTriggerChannel, StopTriggerCondition,
StopTriggerConditionValue, StopTriggerDelay

Vendor Keithley

Usage AI, Common

Access Read/write

Data Type String

Read-only
when running

Yes

{None} The acquisition stops when the number of samples
specified by SamplesPerTrigger is acquired, or the stop
function is issued.

HwDigital The acquisition stops on the rising or falling edge of the
TGIN input line.

HwAnalog The acquisition stops when the channel specified by the
StopTriggerChannel property meets the specified stop
trigger conditions.
12-33

Sum
12SumPurpose Specify whether the source sum input is enabled or disabled

Description Sum can be Off or On. If Sum is Off, the sum input is disabled. If Sum is On, the
sum input is enabled. The signal on the sum input is internally added to the
output that the source would otherwise produce.

For the Option 1D4 single-channel source, the source sum input is shared with
the source COLA output. Only one of these two sources can be enabled at any
one time. For prototype Option 1D4 sources, one of the two must be enabled at
all times. By default, the constant-level output is enabled and the sum input is
disabled.

Characteristics

Values

Vendor Agilent Technologies

Usage AO, Channel

Access Read/write

Data Type String

Read-only
when running

No

{Off} Disable the source sum input.

On Enable the source sum input.
12-34

TransferMode
12TransferModePurpose Specify how data is transferred from the data acquisition device to system
memory

Description For National Instruments hardware, TransferMode can be Interrupts or
SingleDMA for both analog input and analog output subsystems. If
TransferMode is Interrupts, then data is transferred from the hardware
first-in, first-out memory buffer (FIFO) to system memory using interrupts. If
TransferMode is SingleDMA, then data is transferred from the hardware FIFO
to system memory using a single direct memory access (DMA) channel. Some
boards also support a TransferMode of DualDMA for analog input subsystems.
For example, the AT-MIO-16E-1 board supports this transfer mode. If
TransferMode is DualDMA, then data is transferred from the hardware FIFO to
system memory using two DMA channels. Depending on your system
resources, data transfer via interrupts can significantly degrade system
performance.

For Measurement Computing hardware, TransferMode can be Default,
InterruptPerPoint, DMA, InterruptPerBlock, or InterruptPerScan.If
TransferMode is Default, the transfer mode is automatically selected by the
driver based on the board type and the sampling rate. If TransferMode is
InterruptPerPoint, a single conversion is transferred for each interrupt. You
should use this property value if your sampling rate is less the 5 kHz or you
specify a small block size for memory buffering (as defined by the
BufferingConfig property). If TransferMode is DMA, data is transferred using
a single DMA channel. If TransferMode is InterruptPerBlock, a block of data
is transferred for each interrupt. You should use this property value if your
sampling rate is greater than 5 kHz and you are using a board that has a fast
maximum sampling rate. Note that a data block is defined by the board, and
usually corresponds to half the FIFO size. If TransferMode is
InterruptPerScan, data is not transferred until the entire scan is complete.
This can only be used when the number of points acquired is less than or equal
to the FIFO size. You should use this mode if your sampling rate is higher than
the maximum continuous scan rate of the data acquisition device.

For Keithley hardware, TransferMode can be Interrupts or DMA. If
TransferMode is Interrupts, then data is transferred from the hardware
first-in, first-out memory buffer (FIFO) to system memory using interrupts. If
TransferMode is DMA, then data is transferred from the hardware FIFO buffer
to system memory using a single DMA channel. Note that if bus mastering is
12-35

TransferMode
disabled in the DriverLINX Configuration panel for the device, then DMA is not
offered as an option.

Note If your sampling rate is greater than ~5 kHz, you should avoid using
interrupts if possible. The recommended TransferMode setting for your
application will be described in your hardware documentation, and depends
on the specific board you are using and your platform configuration.

Characteristics

Values Advantech

Keithley

If bus mastering is disabled in the DriverLINX configuration panel for the
device, then DMA is not available, and the default is set to Interrupts.

Vendor Keithley, Measurement Computing, National Instruments

Usage AI, AO, Common

Access Read/write

Data type String

Read-only
when running

Yes

{InterruptPerPoint} Transfer single data points using interrupts.

InterruptPerBlock Transfer a block of data using interrupts (AI only).

DMA Transfer data using a single DMA channel.

Interrupts Transfer data using interrupts.
12-36

TransferMode
Measurement Computing

National Instruments

This default property value is supplied by the driver. For most devices that
support data transfer via interrupts and DMA, SingleDMA is the default value.

Example Set the TransferMode property for a National Instruments board before
acquiring data.

ai = analoginput('nidaq', 1);
set(ai, 'TransferMode', 'SingleDMA');
addchannel(ai, 1:2);
softscope(ai)

{Default} The transfer mode is automatically selected by the
driver based on the board type and the sampling
rate.

InterruptPerPoint Transfer single data points using interrupts.

DMA Transfer data using a single DMA channel (AI only).

InterruptPerBlock Transfer a block of data using interrupts (AI only).

InterruptPerScan Transfer all data when the acquisition is complete
(AI only).

Interrupts Transfer data using interrupts.

SingleDMA Transfer data using a single DMA channel.

DualDMA Transfer data using two DMA channels.
12-37

TransferMode
12-38

A

Troubleshooting Your
Hardware

This appendix describes simple tests you can perform to troubleshoot your National Instruments,
Measurement Computing, Agilent Technologies, and sound card hardware. The tests involve using
software provided by the vendor or the operating system (sound cards), and do not involve using the
Data Acquisition Toolbox. The sections are as follows.

To accurately test your hardware, you should use these vendor tools to match the requirements of
your data acquisition session. For example, you should select the appropriate sampling rate, number
of channels, acquisition mode (continuous or single-point), and input range. If these tests do not help
you, then you might need to register the hardware driver adaptor or contact The MathWorks for
support. Contact information is provided in “Contacting The MathWorks” on page A-19 as well as in
the beginning of this guide. If the problem is with your hardware, then you should contact the
hardware vendor.

Note that if you cannot access your board using the vendor’s software, then you will not be able to do
so with the Data Acquisition Toolbox.

Agilent Technologies
Hardware (p. A-2)

How to use the Soft Front Panel

Measurement Computing
Hardware (p. A-5)

How to use InstaCal

National Instruments
Hardware (p. A-8)

How to use the Measurement & Automation Explorer

Sound Cards (p. A-11) How to use Windows resources

Other Things to Try
(p. A-18)

How to register the hardware driver adaptor or contact The MathWorks

A Troubleshooting Your Hardware

A-2
Agilent Technologies Hardware
If you are having trouble using the Data Acquisition Toolbox with a supported
Agilent Technologies device, the reason might be that

• You are using a hardware driver that is incompatible with the toolbox.

• Your hardware is not functioning properly.

What Driver Are You Using?
The Data Acquisition Toolbox is compatible only with specific versions of the
HP E1432 driver, and is not guaranteed to work with any other versions. You
can find out which driver version you are using with the Soft Front Panel,
which is described in the next section.

If you think your driver is incompatible with the Data Acquisition Toolbox,
then you should verify that your hardware is functioning properly before
updating drivers. If your hardware is functioning properly, then you are
probably using unsupported drivers. Visit the Agilent Web site at
http://agilent.com/ for the latest drivers.

For a list of the HP E1432 driver versions that are compatible with the Data
Acquisition Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

Agilent Technologies Hardware
Is Your Hardware Functioning Properly?
To troubleshoot your Agilent hardware, you should use the HP E1432 Soft
Front Panel. The Soft Front Panel allows you to test each module supported by
the HP E1432 driver software, and is installed as part of this software. You can
access the Soft Front Panel through the Windows Start button.

Start->Programs->hpe1432->HP E1432 Soft Front Panel

For example, suppose you want to verify that the HP E1432 module is
operating correctly. To do this, you should connect a known signal — such as
that produced by a function generator — to the module. You then configure the
input parameters as shown below.
A-3

A Troubleshooting Your Hardware

A-4
The result of such a test is shown below for channel 1.

If the Soft Front Panel does not provide you with the expected results for the
module under test, and you are sure that your test setup is configured
correctly, then the problem is probably with the hardware.

To get support for your Agilent Technologies hardware, visit their Web site at
http://www.agilent.com/.

Measurement Computing Hardware
Measurement Computing Hardware
If you are having trouble using the Data Acquisition Toolbox with a supported
Measurement Computing board, the reason might be that

• You are using a hardware driver that is incompatible with the toolbox.

• Your hardware is not functioning properly.

What Driver Are You Using?
The Data Acquisition Toolbox is compatible only with specific versions of the
the Universal Library drivers or the associated release of the InstaCal
software, and is not guaranteed to work with any other versions. For a list of
the driver versions that are compatible with the Data Acquisition Toolbox,
refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

If you think your driver is incompatible with the Data Acquisition Toolbox,
then you should verify that your hardware is functioning properly before
updating drivers. If your hardware is functioning properly, then you are
probably using unsupported drivers. Visit the Measurement Computing Web
site at http://www.measurementcomputing.com/ for the latest drivers.

Suppose you are using InstaCal software with your hardware. You can access
this software through the Windows Start button.

Start->Programs->Measurement Computing->InstaCal

The driver version is available through the Help menu.

Help->About InstaCal
A-5

A Troubleshooting Your Hardware

A-6
For example, the version of InstaCal used by a PCI-DAS4020/12 board is
shown below.

Measurement Computing Hardware
Is Your Hardware Functioning Properly?
To troubleshoot your Measurement Computing hardware, you should use the
test feature provided by InstaCal. To access this feature, select the board you
want to test from the PC Board List, and select Analog from the Test menu.

For example, suppose you want to verify that the analog input subsystem on
your PCI-DAS4020/12 board is operating correctly. To do this, you should
connect a known signal — such as that produced by a function generator — to
one of the channels, using a BNC cable. The result of such a test is shown below
for channel 0.

If InstaCal does not provide you with the expected results for the subsystem
under test, and you are sure that your test setup is configured correctly, then
the problem is probably with the hardware.

To get support for your Measurement Computing hardware, visit their Web
site at http://www.measurementcomputing.com/.
A-7

A Troubleshooting Your Hardware

A-8
National Instruments Hardware
If you are having trouble using the Data Acquisition Toolbox with a supported
National Instruments board, the reason might be that

• You are using a hardware driver that is incompatible with the toolbox.

• Your hardware is not functioning properly.

What Driver Are You Using?
The Data Acquisition Toolbox is compatible only with specific versions of the
NI-DAQ driver, and is not guaranteed to work with any other versions. For a
list of the NI-DAQ driver versions that are compatible with the Data
Acquisition Toolbox, refer to the product page on the MathWorks Web site at
http://www.mathworks.com/products/daq/.

If you think your driver is incompatible with the Data Acquisition Toolbox,
then you should verify that your hardware is functioning properly before
updating drivers. If your hardware is functioning properly, then you are
probably using unsupported drivers. Visit the National Instruments Web site
at http://www.natinst.com/ for the latest NI-DAQ drivers.

You can find out which version of NI-DAQ you are using with National
Instruments’ Measurement & Automation Explorer. You should be able to
access this program through the Windows Desktop. The driver version is
available through the Help menu.

Help->About Measurement & Automation Explorer->System
Info->Software

National Instruments Hardware
For example, the version of NI-DAQ used by a PCI-6024E board is shown
below.
A-9

A Troubleshooting Your Hardware

A-1
Is Your Hardware Functioning Properly?
To troubleshoot your National Instruments hardware, you should use the Test
Panel. The Test Panel allows you to test each subsystem supported by your
board, and is installed as part of the NI-DAQ driver software. You can access
the Test Panel by right-clicking the appropriate device in the Measurement &
Automation Explorer and choosing Test Panel.

For example, suppose you want to verify that the analog input subsystem on
your PCI-6024E board is operating correctly. To do this, you should connect a
known signal — such as that produced by a function generator — to one or
more channels, using a screw terminal panel. The result of such a test is shown
below for channel 1.

If the Test Panel does not provide you with the expected results for the
subsystem under test, and you are sure that your test setup is configured
correctly, then the problem is probably with the hardware.

To get support for your National Instruments hardware, visit their Web site at
http://www.natinst.com/.
0

Sound Cards
Sound Cards
You can verify that your sound card is functioning properly by recording data
and then playing back the recorded data. Recording data uses the sound card’s
analog input subsystem, while playing back data uses the sound card’s analog
output subsystem. Successful completion of these two tasks indicates your
sound card works properly. The data to be recorded can come from two sources:

• A microphone

• A CD player

The first thing you should do is enable your sound card’s ability to record and
play data. This is done using the Microsoft Windows Multimedia Properties
dialog box. You can access this dialog box using the Windows Start button.

Start->Settings->Control Panel->Multimedia

The Multimedia Properties dialog box for a Windows NT 4.0 platform is
shown below, and is configured for both playback and recording.
A-11

A Troubleshooting Your Hardware

A-1
You can record data and then play it back using the Windows Sound Recorder
panel. To access this application:

Start->Programs->Accessories->Multimedia->Sound Recorder

The figure below shows how to record and play data.

You must also make sure that your microphone or CD player is enabled for
recording and playback using the Windows Volume Control panel. To access
this application:

Start->Programs->Accessories->Multimedia->Volume Control

The Volume Control panel is shown below. The CD, microphone, and line
devices are enabled for playback when the Mute check box is cleared for the CD
Balance, Microphone Balance, and Line Balance volume controls,
respectively. You can play .WAV files by leaving the Mute check box cleared for
the Wave Balance volume control.

Record buttonPlay button
2

Sound Cards
If the CD, microphone, or Wave Output controls do not appear in the Volume
Control panel, you must modify the playback properties by selecting
Properties from the Options menu. The Properties dialog box is shown below
for playback devices. Select the appropriate device check box to enable
playback.

To check if the CD and microphone are enabled for recording, select the
Recording radio button in the Properties dialog box, and then select the
appropriate device check box to enable recording. The Properties dialog box is
shown below for recording devices.
A-13

A Troubleshooting Your Hardware

A-1
The Recording Control panel is shown below. You enable the CD or
microphone for recording when the Select check box is checked for the CD
Balance or Microphone Balance controls, respectively.

Microphone and Sound Card Types
Your microphone will be one of two possible types: powered or unpowered. You
can use powered microphones only with Sound Blaster or Sound
Blaster-compatible microphone inputs. You can use unpowered microphones
with any sound card microphone input. Some laptops must use unpowered
microphones because they do not have Sound Blaster compatible sound cards.

As shown below, you can easily identify these two microphone types by their
jacks.

You can find out which sound card brand you have installed by selecting the
Devices tab on the Multimedia Properties dialog box. Refer to “Sound Cards”
on page A-11 for a picture of this dialog box.

Unpowered microphone jack

Powered microphone jack
4

Sound Cards
Testing with a Microphone
To test your sound card with a microphone, follow these steps:

1 Plug the microphone into the appropriate sound card jack. For a Sound
Blaster sound card, this jack is labeled MIC IN.

2 Record audio data by selecting the Record button on the Sound Recorder
and then speak into the microphone. While recording, the green line in the
Sound Recorder should indicate that data is being captured. If this is the
case, then the analog input subsystem on your sound card is functioning
properly.

3 After recording the audio data, save it to disk. The data is automatically
saved as a .WAV file.

4 Play the saved .WAV file. While playing, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
then the analog output subsystem on your sound card is functioning
properly.

If you are not able to record or play data, make sure that the sound card and
input devices are enabled for recording and playback as described in the
beginning of this section.

Testing with a CD Player
To test your sound card with a CD player, follow these steps:

1 Check that your CD is physically connected to your sound card.

- Open your computer and locate the back of the CD player.

- If there is a wire connecting the Audio Out CD port with the sound card,
you can record audio data from your CD. If there is no wire connecting your
CD and sound card, you must either make this connection or use the
microphone to record data.
A-15

A Troubleshooting Your Hardware

A-1
2 Put an audio CD into your CD player. The Windows CD Player application
should be automatically invoked and begin playing the CD. If this doesn’t
occur, then you must access the application manually.

Start->Programs->Accessories->Multimedia->CD Player

The figure below shows how to play a CD with the CD Player application.

3 While the CD is playing, record audio data by selecting the Record button
on the Sound Recorder. While recording, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
then the analog input subsystem on your sound card is functioning properly.
Note that the CD player converts digital audio data to analog audio data.
Therefore, the CD sends analog data to the sound card.

4 After recording the audio data, save it to disk. The data is automatically
saved as a .WAV file.

5 Play the saved .WAV file. While playing, the green line in the Sound
Recorder should indicate that data is being captured. If this is the case,
then the analog output subsystem on your sound card is functioning
properly.

If you are not able to record or play data, make sure that the sound card and
input devices are enabled for recording and playback as described in the
beginning of this section.

Play button
6

Sound Cards
Running in Full Duplex Mode
The term full duplex refers to a system that can send and receive information
simultaneously. For sound cards, full duplex means that the device can acquire
input data via an analog input subsystem while outputting data via an analog
output subsystem at the same time.

Note that full tells you nothing about the bit resolution or the number of
channels used in each direction. Therefore, sound cards can simultaneously
receive and send data using 8 or 16 bits while in mono or stereo mode. A
common restriction of full duplex mode is that both subsystems must be
configured for the same sampling rate.

If you try to run your card in full duplex mode and the following error is
returned,

?? Error using ==> daqdevice/start
Device 'Winsound' already in use.

then your sound card is not configured properly, it does not support this mode,
or you don’t have the correct driver installed.

If your card supports full duplex mode, then you might need to enable this
feature through the Multimedia Properties dialog box. Refer to “Sound
Cards” on page A-11 for a picture of this dialog box. If you are unsure about the
full duplex capabilities of your sound card, refer to its specification sheet or
user manual. It is usually very easy to update your hardware drivers to the
latest version by visiting the vendor’s Web site.
A-17

A Troubleshooting Your Hardware

A-1
Other Things to Try
If troubleshooting your hardware does not help you, then you might need to
register the hardware driver adaptor or contact The MathWorks for support.

Registering the Hardware Driver Adaptor
When you first create a device object, the associated hardware driver adaptor
is automatically registered so that the data acquisition engine can make use of
its services.

The hardware driver adaptors included with the toolbox are all located in the
daq/private directory. The full name for each adaptor is shown below.

If for some reason a toolbox adaptor is not automatically registered, then you
need to register it manually using the daqregister function. For example, to
manually register the sound card adaptor:

daqregister('winsound');

Table A-1: Supported Vendors/Device Types and Full Adaptor Names

Vendor/Device Type Full Adaptor Name

Advantech mwadvantech.dll

Agilent Technologies mwhpe1432.dll

Keithley mwkeithley.dll

Measurement Computing mwmcc.dll

National Instruments mwnidaq.dll

Parallel ports mwparallel.dll

Windows sound cards mwwinsound.dll
8

Other Things to Try
If you are using a third-party adaptor, then you might need to register it
manually. If so, you must supply the full pathname to daqregister. For
example, to register the third-party adaptor myadaptor.dll:

daqregister('D:/MATLABR12/toolbox/daq/myadaptors/myadaptor.dll')

Note You must install the associated hardware driver before adaptor
registration can occur.

Contacting The MathWorks
If you need support from The MathWorks, visit our Web site at
http://www.mathworks.com/support/ or e-mail us at
support@mathworks.com.

Before contacting The MathWorks, you should run the daqsupport function.
This function returns diagnostic information such as

• The versions of the MathWorks products you are using

• Your MATLAB path

• The characteristics of your hardware

The output from daqsupport is automatically saved to a text file, which you can
use to help troubleshoot your problem. For example, if you are having trouble
with your sound card, type

daqsupport('winsound')
A-19

A Troubleshooting Your Hardware

A-2
0

B

Managing Your Memory
Resources

This appendix describes how to manage memory resources. The sections are as follows.

Memory Allocation (p. B-2) How the toolbox automatically allocates memory resources and how
you can override this allocation

How Much Memory Do You
Need? (p. B-3)

How to determine the memory required for your acquisition needs

Example: Managing
Memory Resources (p. B-4)

An example using a sound card that illustrates how the toolbox
allocates memory

B Managing Your Memory Resources

B-2
Memory Allocation
When data is acquired from an analog input subsystem or output to an analog
output subsystem, it must be temporarily stored in computer memory.

The Data Acquisition Toolbox allocates memory in terms of data blocks. A data
block is defined as the smallest “slice” of memory that the data acquisition
engine can usefully manipulate. For example, acquired data is logged to a disk
file using an integral number of data blocks. A representation of allocated
memory using n data blocks is shown below.

The Data Acquisition Toolbox strives to make memory allocation as simple as
possible. For this reason, the data block size and number of blocks are
automatically calculated by the engine. This calculation is based on the
parameters of your acquisition such as the sampling rate, and is meant to apply
to most common data acquisition applications. Additionally, as data is
acquired, the number of blocks dynamically increases up to a predetermined
limit. However, the engine cannot guarantee that the appropriate block size,
number of blocks, or total memory is allocated under these conditions:

• You select certain property values. For example, if the samples to acquire per
trigger are significantly less than the FIFO buffer of your hardware.

• You acquire data at the limits of your hardware, your computer, or the
toolbox. In particular, if you are acquiring data at very high sampling rates,
then the allocated memory must be carefully evaluated to guarantee that
samples are not lost.

You are free to override the memory allocation rules used by the engine and
manually change the block size and number of blocks, provided the device
object is not running. However, you should do so only after careful
consideration, as system performance might be adversely affected, which can
result in lost data.

You can manage memory resources using the BufferingConfig property and
the daqmem function. With BufferingConfig, you can configure and return the
block size and number of blocks used by a device object. With daqmem, you can
return the current state of the memory resources used by a device object, and
configure the maximum memory that one or more device objects can use.

...block 1 block 2 block 3 block n

How Much Memory Do You Need?
How Much Memory Do You Need?
The memory (in bytes) required for data storage depends on these factors:

• The number of hardware channels you use

• The number of samples you need to store in the engine

• The data type size of each sample

The memory required for data storage is given by the formula

Of course, the number of samples you need to store in the engine at any time
depends on your particular needs. The memory used by a device object is given
by the formula

The block size and block number are given by the BufferingConfig property.
The data type is given by the NativeDataType field of the daqhwinfo function.

You can display the memory resources used by (and available to) a device object
with the daqmem function. For analog input objects, memory is used when
channels are added. For analog output objects, memory is used when data is
queued in the engine. For both device objects, the memory used can
dynamically change based on the number of samples acquired or queued.

memory required samples stored channel number data type ××=

memory used block size block number channel number data type×××=
B-3

B Managing Your Memory Resources

B-4
Example: Managing Memory Resources
Suppose you create the analog input object ai for a sound card, add two
channels to it, and configure a four second acquisition using a sampling rate of
11.025 kHz.

ai = analoginput('winsound');
addchannel(ai,1:2);
set(ai,'SampleRate',11025);
set(ai,'SamplesPerTrigger',44100);

You return the default block size and number of blocks with the
BufferingConfig property.

get(ai,'BufferingConfig')
ans =
 1024 30

You return the memory resources with the daqmem function.

daqmem(ai)
ans =
 UsedBytes: 122880
 MaxBytes: 18011136

The UsedBytes field tells you how much memory is currently used by ai, while
the MaxBytes field tells you the maximum memory that ai can use to store
acquired data. Note that the value returned for MaxBytes depends on the total
available computer memory, and might be different for your platform.

You can verify the UsedBytes value with the formula given in the previous
section. However, you must first find the size (in bytes) of each sample using
the daqhwinfo function.

hwinfo = daqhwinfo(ai);
hwinfo.NativeDataType
ans =
int16

The value of the NativeDataType field tells you that each sample requires two
bytes. Therefore, the initial allocated memory is 122,880 bytes. However, if you
want to keep all the acquired data in memory, then 176,400 bytes are required.

Example: Managing Memory Resources
The Data Acquisition Toolbox will accommodate this memory requirement by
dynamically increasing the number of data blocks after you start ai.

start(ai)

After all the data is acquired, you can examine the final number of data blocks
used by ai.

ai.BufferingConfig
ans =
 1024 44

The final total memory used is

daqmem(ai)
ans =
 UsedBytes: 180224
 MaxBytes: 18011136

Note that this was more than enough memory to store all the acquired data.
B-5

B Managing Your Memory Resources

B-6

Glossary
accuracy A determination of how close a measurement comes to the true value.

acquiring data The process of inputting an analog signal from a sensor into an analog input
subsystem, and then converting the signal into bits that the computer can read.

actuator A device that converts data output from your computer into a physical variable.

adaptor The interface between the data acquisition engine and the hardware driver.
The adaptor’s main purpose is to update the engine with properties that are
unique to the hardware device.

A/D converter An analog input subsystem.

analog input
subsystem

Hardware that converts real-world analog input signals into bits that a
computer can read. This is also referred to as an AI subsystem, an A/D
converter, or an ADC.

analog output
subsystem

Hardware that converts digital data to a real-world analog signal. This is also
referred to as an AO subsystem, a D/A converter, or a DAC.

bandwidth The range of frequencies present in the signal being measured. You can also
think of bandwidth as being related to the rate of change of the signal. A slowly
varying signal has a low bandwidth, while a rapidly varying signal has a high
bandwidth.

base property A property that applies to all supported hardware subsystems of a given type
(analog input, analog output, etc.). For example, the SampleRate property is
supported for all analog input subsystems regardless of the vendor.

callback
function

An M-file function that you construct to suit your specific data acquisition
needs. If you supply the callback function as the value for an callback property,
then the function is executed when the event associated with the callback
property occurs.

callback
property

A property associated with a specific event type. When an event occurs, the
engine examines the associated callback property. If a callback function is
given as the value for the callback property, then that function is executed. All
event types have a callback property.

channel A component of an analog input subsystem or an analog output subsystem that
you read data from, or write data to.

channel group The collection of channels contained by an analog input object or an analog
output object. For scanning hardware, the channel group defines the scan
order.

channel
property

A property that applies to individual channels.
Glossary-1

 Glossary

Glo
channel skew The time gap between consecutively sampled channels. Channel skew exists
only for scanning hardware.

common
property

A property that applies to every channel or line contained by a device object.

configuration The process of supplying the device object with the resources and information
necessary to carry out the desired tasks. Configuration consists of two steps:
adding channels or lines, and setting property values to establish the desired
behavior

counter/timer
subsystem

Hardware that is used for event counting, frequency and period measurement,
and pulse train generation. This subsystem is not supported by the Data
Acquisition Toolbox.

D/A converter A digital to analog subsystem.

data acquisition
session

A process that encompasses all the steps you must take to acquire data using
an analog input object, output data using an analog output object, or read
values from or write values to digital I/O lines. These steps are broken down
into initialization, configuration, execution, and termination.

data block The smallest “slice” of memory that the data acquisition engine can usefully
manipulate.

device object A MATLAB object that allows you to access a hardware device.

device-specific
property

A property that applies only for specific hardware devices. For example, the
BitsPerSample property is supported only for sound cards.

differential
input

Input channel configuration where there are two signal wires associated with
each input signal — one for the input signal and one for the reference (return)
signal. The measurement is the difference in voltage between the two wires,
which helps reduce noise and any voltage common to both wires.

digital I/O
subsystem

Hardware that sends or receives digital values (logic levels). This is also
referred to as a DIO subsystem.

DMA Direct memory access (DMA) is a system of transferring data whereby samples
are automatically stored in system memory while the processor does something
else.

engine A MEX-file dynamic link library (DLL) file that stores the device objects and
associated property values that control your data acquisition application,
ssary-2

Glossary
controls the synchronization of events, and controls the storage of acquired or
queued data.

engineering
units properties

Channel properties that allow you to linearly scale input or output data.

event An event occurs at a particular time after a condition is met. Many event types
are automatically generated by the toolbox, while others are generated only
after you configure specific properties.

execution The process of starting the device object and hardware device. While an analog
input object is executing, you can acquire data. While an analog output object
is executing, you can output data.

FIFO buffer The first-in first-out (FIFO) memory buffer, which is used by data acquisition
hardware to temporarily store data.

full duplex A system that can send and receive information simultaneously. For sound
cards, full duplex means that the device can acquire input data via an analog
input subsystem while outputting data via an analog output subsystem at the
same time.

input range The span of input values for which an A/D conversion is valid.

interrupts The slowest but most common method to move acquired data from the
hardware to system memory. Interrupt signals can be generated when one
sample is acquired or when multiple samples are acquired.

line A component of a digital I/O subsystem that you can read digital values from,
or write digital value to.

line group The collection of lines contained by a digital I/O object.

line properties Properties that are configured for individual lines.

logging A state of the Data Acquisition Toolbox where an analog input object stores
acquired data to memory or a log file.

noise Any measurement that is not part of the phenomena of interest.

onboard clock A timer chip on the hardware board which is programmed to generate a pulse
train at the desired rate. In most cases, the onboard clock controls the sampling
rate of the board.

output range The span of output values for which a D/A conversion is valid.

postrigger data Data that is acquired and stored in the engine after the trigger event occurs.
Glossary-3

 Glossary

Glo
precision A determination of how exactly a result is determined without reference to
what the result means.

pretrigger data Data that is acquired and stored in the engine before the trigger event occurs.

properties A characteristic of the toolbox or the hardware driver that you can configure to
suit your needs. The property types supported by the toolbox include base
properties, device-specific properties, common properties, and channel or line
properties.

quantization The process of converting an infinitely precise analog signal to a binary
number. This process is performed by an A/D converter.

queuing data The process of storing data in the engine for eventual output to an analog
output subsystem.

running A state of the Data Acquisition Toolbox where a device object is executing.

sample rate The per-channel rate (in samples/second) that an analog input or analog output
subsystem converts data.

sampling The process whereby an A/D converter or a D/A converter takes a “snapshot” of
the data at discrete times. For most applications, the time interval between
samples is kept constant (e.g., sample every millisecond) unless externally
clocked.

scanning
hardware

Data acquisition hardware that samples a single input signal, converts that
signal to a digital value, and then repeats the process for every input channel
used.

sending A state of the Data Acquisition Toolbox where an analog output object is
outputting (sending) data from the engine to the hardware.

sensor A device that converts a physical variable into a signal that you can input into
your data acquisition hardware.

signal
conditioning

The process of making a sensor signal compatible with the data acquisition
hardware. Signal conditioning includes amplification, filtering, electrical
isolation, and multiplexing.
ssary-4

Glossary
Single-ended
input

Input channel configuration where there is one signal wire associated with
each input signal, and all input signals are connected to the same ground.
Single-ended measurements are more susceptible to noise than differential
measurements due to differences in the signal paths.

SS/H hardware Data acquisition hardware that simultaneously samples all input signals, and
then holds the values until the A/D converter digitizes all the signals.

Subsystem A data acquisition hardware component that performs a specific task. The Data
Acquisition Toolbox supports analog input, analog output, and digital I/O
subsystems.

Trigger event An analog input trigger event initiates data logging to memory or a disk file.
An analog output trigger event initiates the output of data from the engine to
the hardware.
Glossary-5

 Glossary

Glo
ssary-6

Index
The following abbreviations are used in this index.
AI – analog input
AO – analog output
DIO – digital I/O
HP – Hewlett-Packard
MCC – Measurement Computing Corporation
NI – National Instruments

A
A/D converter 1-8

input range 5-55
sampling rate 4-8

absolute time 5-18
accuracy 1-31
acquiring data 3-22

continuous
samples per trigger 5-22
simultaneous input and output 6-37
trigger repeats 5-29

single point 10-64
actuator 1-5
adaptor kit 2-8
adaptors

registering A-18
supported hardware 2-8
third-party A-19

addchannel

AI object 4-3
AO object 6-3

addchannel function 10-9
addline function 10-14
addmuxchannel function 10-17
Agilent Technologies hardware

channel configuration 5-4
decimation factor 12-24
driver A-2
properties 12-3
trigger types

AI object 5-37
AO object 6-25

troubleshooting A-2
AISENSE 12-12
alias 1-38
AMUX-64T

adding channels 10-17
channel indices 10-75

analog input object
acquisition

continuous 5-22
single point 10-64

adding channels 4-3
creating 4-2
display summary 4-22
engineering units 5-55
events and callbacks 5-45
extracting data 5-12
logging

data 4-13
information to disk 8-5

previewing data 5-8
properties

basic setup 4-8
channel 11-6
common 11-3
configuring 3-18

sampling rate 4-8
starting 4-12
status evaluation 4-21
stopping 4-13
triggers

configuring 5-19
types 4-10
Index-1

Index

Ind
analog output object
adding channels 6-3
creating 6-2
display summary 6-14
engineering units 6-34
events and callbacks 6-26
output

continuous 6-21
single point 10-85

properties
basic setup 6-5
channel 11-10
common 11-7
configuring 3-18

queueing data for output 6-8
sampling rate 6-5
starting 6-8
status evaluation 6-13
stopping 6-9
triggers

configuring 6-20
types 6-7

analog triggers
Agilent hardware 5-38
MCC hardware 5-41
NI hardware 5-43

analoginput function 10-18
analogoutput function 10-21
antialiasing filter 1-35
array

data returned by getdata 5-12
device object 3-5

B
bandwidth 1-12
base properties 3-13
ex-2
BiDirectionalBit property 12-8
binary vector 7-12
binvec2dec function 10-24
BitsPerSample property 12-9
block. See data block
blocking function

getdata 5-12
putdata 6-8

board ID 4-2
buffer

configuration 11-14
extracting data 5-13
previewing data 5-9
queuing data 6-16

BufferingConfig property 11-14
BufferingMode property 11-16

C
calibration 1-4
callback function 5-51
callback properties

AI object 5-45
AO object 6-26
saving property values to a MAT-file 8-2

Channel Editor GUI
Channel Display pane 9-5
Channel pane 9-7
Channel Properties pane 9-13

Channel Exporter GUI 9-23
channel gain list 4-4
channel group

AI object 4-3
AO object 6-3

channel names 4-6
channel properties 3-12

AI object 11-6

Index
AO object 11-10
Channel property 11-17
channel skew 5-6
ChannelName property 11-19
channels 3-8

adding
AI object 4-3
AO object 6-3

descriptive names 4-5
input configuration 5-3
mapping to hardware IDs 3-9
Oscilloscope

hardware 9-2
math 9-7
reference 9-7

referencing 4-5
scan order 4-4

ChannelSkew property 11-20
ChannelSkewMode property 11-21
cleaning up the MATLAB environment

clear function 3-25
daqfind function 10-50
delete function 3-25

clear function 10-25
clipping 6-35
clock function 5-36
clocked acquisition 1-24
ClockSource property 11-24
COLA property 12-10
common properties 3-12

AI object 11-3
AO object 11-7
DIO object 11-11

configuring property values
dot notation 3-18
set function 3-18

constructor 3-4

Contents 2-14
continuous acquisition

example using AI and AO 6-37
samples per trigger 5-22
trigger repeats 5-29

continuous output 6-21
Coupling property 12-11
creation function 3-4
custom adaptors 2-8

D
D/A converter 1-8

output range 6-34
sampling rate 6-5

daqcallback

AI example 5-52
default property value

data missed event (AI) 5-46
run-time error event

AI object 5-46
AO object 6-27

daqcallback function 10-27
daqfind function 10-28
daqhelp function 10-30
daqhwinfo function 10-33
daqmem function 10-36
daqpropedit function 10-39
daqread function 10-41
daqregister function 10-45
daqreset function 10-47
daqsupport A-19
daqsupport function A-19
data

extracting from engine 5-12
previewing 5-8
queuing for output 6-16
Index-3

Index

Ind
data acquisition session 3-1, 3-2
acquiring data (AI) 4-12
adding channels

AI object 4-3
AO object 6-3

adding lines 7-4
cleaning up 3-25
configuring properties

AI object 4-8
AO object 6-5

creating a device object
AI object 4-2
AO object 6-2
DIO object 7-2

loading 8-2
outputting data (AO) 6-8
saving 8-2

data block B-2
polling 5-10

data flow
acquired data 2-5
output data 2-7

data missed event 5-46
data tips (Oscilloscope) 9-4
DataMissedFcn property 11-26
debugging your hardware A-19

daqsupport A-19
dec2binvec function 10-48
DefaultChannelValue property 11-27
delete function 10-50
demos 2-15
descriptive names

channels 4-5
lines 7-10

device ID 4-2
device object 3-4

array 3-5
ex-4
simultaneous input and output 6-37
configuring property values 3-18
copying 3-6
creating

AI object 4-2
AO object 6-2
DIO object 7-2

invalid 3-7
loading 8-2
saving 8-2
specifying property names 3-19
starting 3-23
stopping 3-24

device-specific properties 3-13
Agilent hardware 12-3
Keithley hardware 12-4
MCC hardware 12-5
NI hardware 12-5
parallel port 12-6
sound cards 12-6

differential inputs 1-25
digital I/O object

adding lines 7-4
creating 7-2
display summary 7-20
parallel port adaptor 7-3
port types 7-5
properties

common 11-11
line 11-12

reading values 7-14
starting 7-18
status evaluation 7-20
stopping 7-18
writing values 7-12

digital triggers
Agilent hardware

Index
AI object 5-38
AO object 6-25

MCC hardware (AI) 5-40
NI hardware

AI object 5-43
AO object 6-24

digital values
reading 7-14
writing 7-12

digitalio function 10-52
Direction property 11-28
disk logging 11-47
disp function 10-54
display summary

AI object 4-22
AO object 6-14
DIO object 7-20

DMA 1-29
NI hardware 12-35

documentation examples 2-14
dot notation

configuring property values 3-18
returning property values 3-17
saving property values to an M-file 8-2

DriveAISenseToGround property 12-12
driver

Agilent hardware A-2
MCC hardware A-5
NI hardware A-8

E
E1432 driver A-2
engine 2-5

extracting data from 5-12
queuing data to 6-16

engineering units

AI object 5-55
AO object 6-34

event log
AI object 5-48
AO object 6-28

event types
data missed (AI) 5-46
input overrange (AI) 5-46
run-time error

AI object 5-46
AO object 6-27

samples acquired (AI) 5-46
samples output (AO) 6-27
start

AI object 5-47
AO object 6-27

stop
AI object 5-47
AO object 6-27

timer
AI object 5-47
AO object 6-27

trigger
AI object 5-47
AO object 6-28

EventLog property 11-29
events 2-4

AI object 5-45
AO object 6-26
displaying with showdaqevents

AO object 6-23
displaying with showdaqevents function

AI object 5-35
example index 2-14
examples

acquiring data
NI hardware 4-18
Index-5

Index

Ind
sound card 4-14
adding lines 7-10
generating timer events (DIO) 7-19
logging and retrieving information (AI) 8-9
outputting data with a sound card 6-10, 6-11
performing a linear conversion

AI object 5-56
AO object 6-35

polling the data block (AI) 5-10
previewing and extracting data 5-14
reading and writing DIO values 7-15
retrieving event information

AI object 5-50
AO object 6-30

using callback properties
AI object 5-52
AO object 6-31

using putdata 6-18
voice activation (AI)

pretriggers 5-27
repeating triggers 5-30
software trigger 5-22

execution
AI object 4-12
AO object 6-8
DIO object 7-17

exporting (Oscilloscope)
channel data 9-23
measurements 9-24

external clock 1-24
clock sources 11-24

extracting data 5-12
event information 10-62
native data 11-53
time information 5-17
ex-6
F
fft 4-16
FIFO 1-28

TransferMode 12-35
filtering 1-35
finding device objects 10-28
floating signal 1-25
flow of data

acquired 2-5
output 2-7

flushdata 10-56
flushdata function 10-56
full duplex A-17

BitsPerSample property 12-9
function handle 5-51
functions

addchannel 10-9
addline 10-14
addmuxchannel 10-17
analoginput 10-18
analogoutput 10-21
binvec2dec 10-24
clear 10-25
daqcallback 10-27
daqfind 10-28
daqhelp 10-30
daqhwinfo 10-33
daqmem 10-36
daqpropedit 10-39
daqread 10-41
daqregister 10-45
daqreset 10-47
dec2binvec 10-48
delete 10-50
digitalio 10-52
disp 10-54
flushdata 10-56

Index
get 10-58
getdata 10-60
getsample 10-64
getvalue 10-65
ischannel 10-66
isdioline 10-67
isvalid 10-68
length 10-70
load 10-72
makenames 10-74
muxchanidx 10-75
obj2mfile 10-77
peekdata 10-79
propinfo 10-81
putdata 10-83
putsample 10-85
putvalue 10-86
save 10-87
set 10-88
setverify 10-91
showdaqevents 10-93
size 10-95
softscope 10-97
start 10-105
stop 10-106
trigger 10-108
waittilstop 10-109

G
gain 1-23

engineering units (AI) 5-55
gain list 4-4
get function 10-58
getdata function 10-60
getsample function 10-64
getvalue function 10-65

graphical property editor 3-20
grounded signal 1-25
GroundingMode property 12-13
GUI

Channel Editor
Channel Display pane 9-5
Channel pane 9-7
Channel Properties pane 9-13

Channel Exporter 9-23
Hardware Configuration 9-3
Measurement Editor

Measurement pane 9-18
Measurement Properties pane 9-22

Measurement Exporter 9-24
Oscilloscope 9-2
Property Editor 3-21
Scope Editor

Scope pane 9-5
Scope Properties pane 9-12

H
hardware

initializing 10-47
resources 2-16
scanning 1-18
setting up 1-5
simultaneous sample and hold 1-20
supported vendors 2-8

hardware channels (Oscilloscope) 9-2
Hardware Configuration GUI 9-3
hardware ID

channel 4-3
device (board) 4-2
line 7-4
mapping to channels 3-9
port 7-4
Index-7

Index

Ind
hardware triggers
AI object 5-36
AO object 6-24

help 2-19
holding the last output value 12-18
HP E1432 driver A-2
HwChannel property 11-31
HwLine property 11-33

I
ID

channel 4-3
HwChannel 4-5

device (board) 4-2
line 7-4

HwLine 7-9
mapping to channels 3-9
port 7-4

immediate trigger
AI object 5-22
AO object 6-21

Index property 11-34
indexing

channel array 4-5
line array 7-9

initializing the hardware 10-47
InitialTriggerTime property 11-36
input overrange event 5-46
input range 1-23

engineering units 5-56
InputMode property 12-14
InputOverRangeFcn property 11-38
InputRange property 11-39
InputSource property 12-16
InputType property 11-41
InstaCal A-5
ex-8
hardware configuration 2-16
internal clock 1-24
interrupts 1-28

NI hardware 12-35
invalid device object 3-7
ischannel function 10-66
isdioline function 10-67
isnan function 5-34
isvalid function 10-68

J
jitter 1-24

K
Keithley hardware

properties 12-4

L
least significant bit (DIO) 7-9
length function 10-70
line group 7-4
line names 7-10
line object 7-4
line properties 3-12
Line property 11-43
line-configurable device 7-6
LineName 7-10
LineName property 11-44
lines 3-8

adding 7-4
descriptive names 7-10
referencing 7-9

load function 10-72
loading

Index
device objects
MAT-file 8-4
M-file 8-3

Oscilloscope configuration 9-25
LogFileName property 11-45
logging

data to memory 3-22
information to disk (AI) 8-5

file name specification 8-6
multiple files 8-6
retrieving data with daqread 8-7

Logging property 11-46
LoggingMode property 11-47
LogToDiskMode property 11-48

M
makenames function 10-74
managing data

acquired 5-8
output 6-16

manual trigger
AI object 5-22
AO object 6-21

ManualTriggerHwOn property 11-49
mapping channels to hardware IDs 3-9
MAT-file

device objects, saving to 8-4
properties, saving to 8-2

math channels (Oscilloscope) 9-7
maximum samples queued 11-51
MaxSamplesQueued property 11-51
Measurement and Automation Explorer A-8

hardware configuration 2-16
Measurement Computing hardware

channel configuration 5-4
driver A-5

properties 12-5
trigger types (AI) 5-39
troubleshooting A-5

Measurement Editor GUI
Measurement pane 9-18
Measurement Properties pane 9-22

Measurement Exporter GUI 9-24
memory resources B-2
mono mode 4-6
most significant bit (DIO) 7-9
multifunction boards 1-7
multiple device objects

array 3-5
starting 6-37
stopping 6-38

multiplexing 1-13
mux board

adding channels 10-17
channel indices 10-75

muxchanidx function 10-75

N
Name property 11-52
National Instruments hardware

AISENSE 12-12
channel configuration 5-4
data transfer mechanisms 12-35
driver A-8
properties 12-5
trigger types

AI object 5-42
AO object 6-24

troubleshooting A-8
native data

getdata 10-60
offset 11-53
Index-9

Index

Ind
putdata 10-83
scaling 11-55

NativeOffset property 11-53
NativeScaling property 11-55
NI-DAQ driver A-8
noise 1-34
NumMuxBoards property 12-17
Nyquist frequency 4-15
Nyquist theorem 1-36

O
obj2mfile function 10-77
object constructor 3-4
onboard clock 1-24
one-shot acquisition 5-29
online help 2-19
Oscilloscope

displaying channels 9-4
exporting data 9-23
making measurements 9-17
opening 9-2
saving and loading the configuration 9-25
scaling channel data 9-11
triggering 9-14

OutOfDataMode property 12-18
output range 6-34
OutputRange property 11-56
outputting data 3-22

continuous 6-21
holding the last value 12-18
single point 10-85

overloaded functions 10-2
overrange condition 1-23
ex-10
P
parallel port

adaptor 7-3
device-specific properties 12-6

Parent property 11-58
PC clock 1-24
peekdata function 10-79
polarity 1-23

engineering units (AI) 5-55
polling the data block 5-10
port characteristics 7-5
Port property 11-59
PortAddress property 12-19
port-configurable device 7-5
postriggers 5-27
precision 1-32
pretriggers 5-26
previewing data 5-8
properties

BiDirectionalBit 12-8
BitsPerSample 12-9
BufferingConfig 11-14
BufferingMode 11-16
Channel 11-17
ChannelName 11-19
ChannelSkew 11-20
ChannelSkewMode 11-21
ClockSource 11-24
COLA 12-10
Coupling 12-11
DataMissedFcn 11-26
DefaultChannelValue 11-27
Direction 11-28
DriveAISenseToGround 12-12
EventLog 11-29
GroundingMode 12-13
HwChannel 11-31

Index
HwLine 11-33
Index 11-34
InitialTriggerTime 11-36
InputMode 12-14
InputOverRangeFcn 11-38
InputRange 11-39
InputSource 12-16
InputType 11-41
Line 11-43
LineName 11-44
LogFileName 11-45
Logging 11-46
LoggingMode 11-47
LogToDiskMode 11-48
ManualTriggerHwOn 11-49
MaxSamplesQueued 11-51
Name 11-52
NativeOffset 11-53
NativeScaling 11-55
NumMuxBoards 12-17
OutOfDataMode 12-18
OutputRange 11-56
Parent 11-58
Port 11-59
PortAddress 12-19
RampRate 12-20
RepeatOutput 11-60
Running 11-61
RuntimeErrorFcn 11-62
SampleRate 11-64
SamplesAcquired 11-66
SamplesAcquiredFcn 11-67
SamplesAcquiredFcnCount 11-68
SamplesAvailable 11-69
SamplesOutput 11-70
SamplesOutputFcn 11-71
SamplesOutputFcnCount 11-72

SamplesPerTrigger 11-73
Sending 11-74
SensorRange 11-75
SourceMode 12-21
SourceOutput 12-22
Span 12-24
StandardSampleRates 12-26
StartFcn 11-76
StopFcn 11-77
StopTriggerChannel 12-27
StopTriggerCondition 12-28
StopTriggerConditionValue 12-30
StopTriggerDelay 12-31
StopTriggerDelayUnits 12-32
StopTriggerType 12-33
Sum 12-34
Tag 11-79
Timeout 11-80
TimerFcn 11-81
TimerPeriod 11-82
TransferMode 12-35
TriggerChannel 11-84
TriggerCondition 11-85
TriggerConditionValue 11-90
TriggerDelay 11-91
TriggerDelayUnits 11-92
TriggerFcn 11-83
TriggerRepeat 11-93
TriggersExecuted 11-94
TriggerType 11-95
Type 11-98
Units 11-99
UnitsRange 11-100
UserData 11-101

property characteristics 2-20
Property Editor 3-20
property types
Index-11

Index

Ind
base 3-13
channel 3-12

AI object 11-6
AO object 11-10

common 3-12
AI object 11-3
AO object 11-7
DIO object 11-11

device-specific 3-13
Agilent hardware 12-3
Keithley hardware 12-4
MCC hardware 12-5
NI hardware 12-5
parallel port 12-6
sound cards 12-6

line 3-12
DIO object 11-12

Oscilloscope
channel 9-12
display 9-6
measurement 9-20
trigger 9-16

property values
configuring 3-18
default 3-19
graphical property editor 3-20
saving 8-2
specifying names 3-19

propinfo function 10-81
putdata function 10-83
putsample function 10-85
putvalue function 10-86

Q
quantization 1-21
queuing data for output 6-16
ex-12
maximum number of samples 11-51
Quick Reference Guide 2-15

R
RampRate property 12-20
reading digital values 7-14
read-only properties 2-20
reference channels (Oscilloscope) 9-7
registering your adaptor A-18
relative time 5-17
repeating triggers 5-29
RepeatOutput property 11-60
resetting the hardware 10-47
retrieving data from a log file 8-7
returning property values

dot notation 3-17
get 3-15
set function 3-14

running device objects 3-22
Running property 11-61
run-time error event

AI object 5-46
AO object 6-27

RuntimeErrorFcn property 11-62

S
SampleRate property 11-64
samples acquired event 5-46
samples output event 6-27
samples per trigger

postrigger data 5-27
pretrigger data 5-26

SamplesAcquired property 11-66
SamplesAcquiredFcn property 11-67
SamplesAcquiredFcnCount property 11-68

Index
SamplesAvailable property 11-69
SamplesOutput property 11-70
SamplesOutputFcn property 11-71
SamplesOutputFcnCount property 11-72
SamplesPerTrigger property 11-73
sampling 1-17
sampling rate

AI subsystem 5-5
AO subsystem 6-5

saturation 6-35
save function 10-87
saving

device objects
MAT-file 8-4
M-file 8-2

information to disk (AI) 8-5
Oscilloscope configuration 9-25
property values to a MAT-file 8-2

scaling the data
AI object 5-55
AO object 6-34

scanning hardware 1-18
channel order 4-4

Scope Editor GUI
Scope pane 9-5
Scope Properties pane 9-12

sending data 3-22
Sending property 11-74
SensorRange property 11-75
sensors 1-9

range 11-75
session 3-1, 3-2

loading 8-2
saving 8-2

set function 10-88
settling time 1-32
setverify function 10-91

showdaqevents function 10-93
signal conditioning 1-12
simultaneous input and output 6-37
simultaneous sample and hold hardware 1-20
single-ended inputs 1-26
single-point

acquisition 10-64
output 10-85

size function 10-95
skew 5-6
softscope function 10-97
software clock 1-24

MCC hardware 11-24
software trigger 5-22
sound cards

channel configuration 5-4
device-specific properties 12-6
mono mode 4-6
standard sample rates 12-26
stereo mode 4-7
troubleshooting A-11

SourceMode property 12-21
SourceOutput property 12-22
Span property 12-24
StandardSampleRates property 12-26
start event

AI object 5-47
AO object 6-27

start function 10-105
StartFcn

AI object 5-47
AO object 6-27

StartFcn property 11-76
starting multiple device objects 6-37
state

logging 3-22
running 3-22
Index-13

Index

Ind
sending 3-22
status evaluation

AI object 4-21
AO object 6-13
DIO object 7-20

stereo mode 4-7
stop event

AI object 5-47
AO object 6-27

stop function 10-106
StopFcn property 11-77
StopTriggerChannel property 12-27
StopTriggerCondition property 12-28
StopTriggerConditionValue property 12-30
StopTriggerDelay property 12-31
StopTriggerDelayUnits property 12-32
StopTriggerType property 12-33
Sum property 12-34
synchronizing triggers 11-49

T
Tag property 11-79
third-party adaptors A-19
time

absolute 5-18
initial trigger 5-18
relative 5-17

Timeout property 11-80
timer event

AI object 5-47
AO object 6-27
DIO object 7-17

TimerFcn property 11-81
TimerPeriod property 11-82
toolbox components

data acquisition engine 2-5
ex-14
hardware driver adaptor 2-8
M-files 2-4

transducer 1-5
TransferMode property 12-35
trigger event

AI object 5-47
AO object 6-28

trigger function 10-108
TriggerChannel property 11-84
TriggerCondition property 11-85
TriggerConditionValue property 11-90
TriggerDelay property 11-91
TriggerDelayUnits property 11-92
triggered

acquisition 5-19
output 6-20

TriggerFcn property 11-83
TriggerRepeat property 11-93
triggers

delays 5-25
Oscilloscope 9-14
postriggers 5-27
pretriggers 5-26
repeating 5-29
samples acquired for each trigger 4-11
synchronizing for AI and AO 11-49
times

AI object 5-36
AO object 6-23
initial trigger 5-18

trigger conditions (AI) 5-20
trigger types

AI object 5-20
AO object 6-21
Oscilloscope 9-14

TriggersExecuted property 11-94
TriggerType property 11-95

Index
Type property 11-98

U
undersampling 1-36
Units property 11-99
UnitsRange property 11-100
Universal Library driver A-5
UserData property 11-101

saving values to a MAT-file 8-2

V
verifying property values 4-9
voice activation example 5-22

W
waittilstop function 10-109
Workspace browser

DAQ Help 2-19
Display Hardware Info 2-18
Display Summary 4-22
Property Editor 3-20
Show DAQ Events

AI object 5-50
AO object 6-30

writing digital values 7-12
Index-15

Index

Ind
ex-16

	Introduction to Data Acquisition
	What Is the Data Acquisition Toolbox?
	Exploring the Toolbox

	Anatomy of a Data Acquisition Experiment
	The Data Acquisition System
	Data Acquisition Hardware
	Sensors
	Signal Conditioning
	The Computer
	Software

	The Analog Input Subsystem
	Sampling
	Quantization
	Channel Configuration
	Transferring Data from Hardware to System Memory

	Making Quality Measurements
	Accuracy and Precision
	Noise
	Matching the Sensor Range and A/D Converter Range
	How Fast Should a Signal Be Sampled?

	Selected Bibliography

	Getting Started
	Installation Information
	Toolbox Installation
	Hardware and Driver Installation

	Toolbox Components
	M-File Functions
	The Data Acquisition Engine
	The Hardware Driver Adaptor

	Accessing Your Hardware
	Acquiring Data
	Outputting Data
	Reading and Writing Digital Values

	Understanding the Toolbox Capabilities
	The Contents M-File
	Documentation Examples
	The Quick Reference Guide
	Demos

	Examining Your Hardware Resources
	General Toolbox Information
	Adaptor-Specific Information
	Device Object Information

	Getting Help
	The daqhelp Function
	The propinfo Function

	The Data Acquisition Session
	Overview
	Creating a Device Object
	Creating an Array of Device Objects
	Where Do Device Objects Exist?

	Adding Channels or Lines
	Mapping Hardware Channel IDs to MATLAB Indices

	Configuring and Returning Properties
	Property Types
	Returning Property Names and Property Values
	Configuring Property Values
	Specifying Property Names
	Default Property Values
	The Data Acquisition Property Editor

	Acquiring and Outputting Data
	Starting the Device Object
	Logging or Sending Data
	Stopping the Device Object

	Cleaning Up

	Getting Started with Analog Input
	Creating an Analog Input Object
	Adding Channels to an Analog Input Object
	Referencing Individual Hardware Channels
	Example: Adding Channels for a Sound Card

	Configuring Analog Input Properties
	The Sampling Rate
	Trigger Types
	The Samples to Acquire per Trigger

	Acquiring Data
	Starting the Analog Input Object
	Logging Data
	Stopping the Analog Input Object

	Analog Input Examples
	Acquiring Data with a Sound Card
	Acquiring Data with a National Instruments Board

	Evaluating the Analog Input Object Status
	Status Properties
	The Display Summary

	Doing More with Analog Input
	Configuring and Sampling Input Channels
	Input Channel Configuration
	Sampling Rate
	Channel Skew

	Managing Acquired Data
	Previewing Data
	Extracting Data from the Engine
	Returning Time Information

	Configuring Analog Input Triggers
	Defining a Trigger: Trigger Types and Conditions
	Executing the Trigger
	Trigger Delays
	Repeating Triggers
	How Many Triggers Occurred?
	When Did the Trigger Occur?
	Device-Specific Hardware Triggers

	Events and Callbacks
	Event Types
	Recording and Retrieving Event Information
	Creating and Executing Callback Functions
	Examples: Using Callback Properties and Functions

	Linearly Scaling the Data: Engineering Units
	Example: Performing a Linear Conversion

	Analog Output
	Getting Started with Analog Output
	Creating an Analog Output Object
	Adding Channels to an Analog Output Object
	Configuring Analog Output Properties
	Outputting Data
	Analog Output Examples
	Evaluating the Analog Output Object Status

	Managing Output Data
	Queuing Data with putdata
	Example: Queuing Data with putdata

	Configuring Analog Output Triggers
	Defining a Trigger: Trigger Types
	Executing the Trigger
	How Many Triggers Occurred?
	When Did the Trigger Occur?
	Device-Specific Hardware Triggers

	Events and Callbacks
	Event Types
	Recording and Retrieving Event Information
	Examples: Using Callback Properties and Callback Functions

	Linearly Scaling the Data: Engineering Units
	Example: Performing a Linear Conversion

	Starting Multiple Device Objects

	Digital Input/Output
	Creating a Digital I/O Object
	The Parallel Port

	Adding Lines to a Digital I/O Object
	Line and Port Characteristics
	Referencing Individual Hardware Lines

	Writing and Reading Digital I/O Line Values
	Writing Digital Values
	Reading Digital Values
	Example: Writing and Reading Digital Values

	Generating Timer Events
	Timer Events
	Starting and Stopping a Digital I/O Object
	Example: Generating Timer Events

	Evaluating the Digital I/O Object Status
	The Display Summary

	Saving and Loading the Session
	Saving and Loading Device Objects
	Saving Device Objects to an M-File
	Saving Device Objects to a MAT-File

	Logging Information to Disk
	Specifying a Filename
	Retrieving Logged Information
	Example: Logging and Retrieving Information

	softscope: The Data Acquisition Oscilloscope
	Opening the Oscilloscope
	Hardware Configuration

	Displaying Channels
	Creating Additional Displays
	Configuring Display Properties
	Math and Reference Channels
	Removing Channel Displays

	Scaling the Channel Data
	Configuring Channel Properties

	Triggering the Oscilloscope
	Acquisition Types
	Trigger Types
	Configuring Trigger Properties

	Making Measurements
	Defining a Measurement
	Defining a New Measurement Type
	Configuring Measurement Properties

	Exporting Data
	Channels
	Measurements

	Saving and Loading the Oscilloscope Configuration

	Function Reference
	Functions — Categorical List
	Getting Command Line Function Help
	Creating Device Objects
	Adding Channels and Lines
	Getting and Setting Properties
	Executing the Object
	Working with Data
	Getting Information and Help
	General Purpose

	Functions — Alphabetical List
	addchannel
	addline
	addmuxchannel
	analoginput
	analogoutput
	binvec2dec
	clear
	daqcallback
	daqfind
	daqhelp
	daqhwinfo
	daqmem
	daqpropedit
	daqread
	daqregister
	daqreset
	dec2binvec
	delete
	digitalio
	disp
	flushdata
	get
	getdata
	getsample
	getvalue
	ischannel
	isdioline
	isvalid
	length
	load
	makenames
	muxchanidx
	obj2mfile
	peekdata
	propinfo
	putdata
	putsample
	putvalue
	save
	set
	setverify
	showdaqevents
	size
	softscope
	start
	stop
	trigger
	waittilstop

	Base Property Reference
	Base Properties — Categorical List
	Getting Command Line Property Help
	Analog Input Properties
	Analog Output Properties
	Digital I/O Properties

	Base Properties — Alphabetical List
	BufferingConfig
	BufferingMode
	Channel
	ChannelName
	ChannelSkew
	ChannelSkewMode
	ClockSource
	DataMissedFcn
	DefaultChannelValue
	Direction
	EventLog
	HwChannel
	HwLine
	Index
	InitialTriggerTime
	InputOverRangeFcn
	InputRange
	InputType
	Line
	LineName
	LogFileName
	Logging
	LoggingMode
	LogToDiskMode
	ManualTriggerHwOn
	MaxSamplesQueued
	Name
	NativeOffset
	NativeScaling
	OutputRange
	Parent
	Port
	RepeatOutput
	Running
	RuntimeErrorFcn
	SampleRate
	SamplesAcquired
	SamplesAcquiredFcn
	SamplesAcquiredFcnCount
	SamplesAvailable
	SamplesOutput
	SamplesOutputFcn
	SamplesOutputFcnCount
	SamplesPerTrigger
	Sending
	SensorRange
	StartFcn
	StopFcn
	Tag
	Timeout
	TimerFcn
	TimerPeriod
	TriggerFcn
	TriggerChannel
	TriggerCondition
	TriggerConditionValue
	TriggerDelay
	TriggerDelayUnits
	TriggerRepeat
	TriggersExecuted
	TriggerType
	Type
	Units
	UnitsRange
	UserData

	Device-Specific Property Reference
	Device-Specific Properties — By Vendor
	Getting Command Line Property Help
	Agilent Technologies Properties
	Keithley Properties
	Measurement Computing Properties
	National Instruments Properties
	Parallel Port Properties
	Sound Card Properties

	Device-Specific Properties — Alphabetical List
	BiDirectionalBit
	BitsPerSample
	COLA
	Coupling
	DriveAISenseToGround
	GroundingMode
	InputMode
	InputSource
	NumMuxBoards
	OutOfDataMode
	PortAddress
	RampRate
	SourceMode
	SourceOutput
	Span
	StandardSampleRates
	StopTriggerChannel
	StopTriggerCondition
	StopTriggerConditionValue
	StopTriggerDelay
	StopTriggerDelayUnits
	StopTriggerType
	Sum
	TransferMode

	Troubleshooting Your Hardware
	Agilent Technologies Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	Measurement Computing Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	National Instruments Hardware
	What Driver Are You Using?
	Is Your Hardware Functioning Properly?

	Sound Cards
	Microphone and Sound Card Types
	Testing with a Microphone
	Testing with a CD Player
	Running in Full Duplex Mode

	Other Things to Try
	Registering the Hardware Driver Adaptor
	Contacting The MathWorks

	Managing Your Memory Resources
	Memory Allocation
	How Much Memory Do You Need?
	Example: Managing Memory Resources

	Glossary
	Index

